Effect of exogenous proline on the production and partitioning of dry matter and on the organic carbon content at different stages of the tomato plant
DOI:
https://doi.org/10.17268/sci.agropecu.2026.010Palabras clave:
Vegetable, Amino acid, Compatible osmolytes, Solanum lycopersicum L, Water limitationResumen
Water limitation is one of the most serious problems in tomato production, responsible for a significant reduction in productivity and fruit quality. In this context, the application of exogenous proline may be an alternative for plants to deal with possible water stress. The objective of this work was to evaluate the production, dry matter mass partition and organic carbon content of the tomato cultivar “Vivacy”, cultivated with doses of proline and irrigated every seven days. A randomized block design was used, with four replications and a 2 x 3 + 1 factorial arrangement. The factors consisted of 2 doses of proline (100 and 150 mg L-1), 3 application times (1, 3 and 6 days after irrigation) and a control without proline application. Data analysis showed a significant difference in the variables analyzed, revealing that the application of proline influenced the production and partition of dry matter mass of tomato plants. However, no significant difference was found in some variables, although the application of treatments showed superior results compared to the control. Proline sprayed at a dose of 100 mg L-1 increases the dry matter mass and organic carbon content in tomato plants during the fruiting and end-of-cycle phases, in addition to contributing to greater dry matter partitioning for the fruits.
Citas
Abdullah, M. A., Ridha, A., & Rusyid, S. (2021) Estimation of biomass potential, carbon stocks, and carbon sequestration of Trigona sp. honey bees feed. In: 2nd Biennial Conference of Tropical Biodiversity, IOP Conf. Series: Earth and Environmental Science 886. https://doi.org/10.1088/1755-1315/886/1/012072
Abreu, D. T. B., Oliveira, F. H. T., Queiroga, F. M., Costa, A. C., Carvalho, S. L., & Tavares, H. A. M. (2018) Accumulation of dry matter and macronutrients by the Caeté tomato under field conditions. Dyna, 85(207), 101-106. https://doi.org/10.15446/dyna.v85n207.72277
Aliche, E. B., Theeuwen, T. P. J. M., Oortwijn, M., Visser, R. G. F., & Linden, C. G. (2020) Carbon partitioning mechanisms in potato under drought stress. Plant Physiology and Biochemistry, 146, 211-219. https://doi.org/10.1016/j.plaphy.2019.11.019
Almeida, V. S., Silva, D. J. H., Gomes, C. N., Antonio, A. C., Moura, A. D., & Lima, A. L. R. (2015) Sistema Viçosa para o cultivo de tomateiro. Horticultura Brasileira, 33, 074-079. https://doi.org/10.1590/S0102-053620150000100012
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO.
Altuntas, C., Demiralay, M., Muslu, A. S., & Terzi, R. (2020) Proline-stimulated signaling primarily targets the chlorophyll degradation pathway and photosynthesis associated processes to cope with short-term water deficit in maize. Photosynthesis Research, 144, 35-48. https://doi.org/10.1007/s11120-020-00727-w
Alvarenga, M. A. R. (2013) Tomate produção em campo, em casa de vegetação e em hidroponia. 2. ed. UFLA.
Bezerra Neto, E., & Barreto, L. P. (2011) Análises Químicas e Bioquímicas em Plantas. UFRPE.
Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018) Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(8), 2833-2849. https://doi.org/10.1007/s13197-018-3221-z
Cunha, J. G., Cavalcante, I. H. L., Silva, L. S., Silva, M. A., Sousa, K. A. O., & Paiva Neto, V. B. (2022) Algal extract and proline promote physiological changes in mango trees during shoot maturation. Revista Brasileira de Fruticultura, 44(3), e854. https://doi.org/10.1590/0100-29452022854
Dawood, M. G., Khater, M. A., & El-Awadi, M. E. (2021) Physiological role of osmoregulators proline and glycinebetaine in increasing salinity tolerance of Chickpea. Egyptian Journal of Chemistry, 64(12), 7637-7648. https://doi.org/10.21608/ejchem.2021.85725.4233
Embrapa. (2018) Sistema Brasileiro de Classificação de Solos. 5. ed. Embrapa.
Fara, S. J., Delazari, F. T., Gomes, S. R., Araújo, W. L., & Silva, D. J. H. (2019) Stomata opening and productiveness response of fresh market tomato under different irrigation intervals. Scientia Horticulturae, 255, 86-95. https://doi.org/10.1016/j.scienta.2019.05.025
Ferreira, E., Cavalcanti, P., & Nogueira, D. (2014) ExpDes: an R package for ANOVA and experimental designs. Applied Mathematics, 5(19), 2952-2958. https://doi.org/10.4236/am.2014.519280
Gao, Y., Zhang, J., Wang, C., Han, K., Hu, L., Niu, T., Yang, Y., Chang, Y., & Xie, J. (2023) Exogenous proline enhances systemic defense against salt stress in celery by regulating photosystem, phenolic compounds, and antioxidant system. Plants, 12(4), 928. https://doi.org/10.3390/plants12040928.
Geilfus, C. M., Zörb, C., Jones, J. J., Wimmer, M.A. & Schmöckel, S. M. (2024) Water for agriculture: more crop per drop. Plant Biology, 26, 499-507. https://doi.org/10.1111/plb.13652
Gruszecki, R., Stawiarz, A., & Walasek-Janusz, M. (2022) The effects of proline on the yield and essential oil content of Turnip-Rooted Parsley (Petroselinum crispum ssp. tuberosum). Agronomy, 12(8), e1941. https://doi.org/10.3390/agronomy12081941
IBGE (2024). Indicadores IBGE: Levantamento Sistemático da Produção Agrícola. Instituto Brasileiro de Geografia e Estatística.
Irviring, L. J. (2015) Carbon assimilation, biomass partitioning and productivity in grasses. Agriculture, 5(4), 1116-1134. https://doi.org/10.3390/agriculture5041116
Khalid, M., Rehman, H. M., Ahmad, S., Saleem, F., Nawaz, S., Ahmed, N., Uzair, M., Rana, I. A., Lam, H., Zaman, Q. U., & Atif, R. M. (2022) Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops. International Journal of Molecular Sciences, 23(21), e12913. https://doi.org/10.3390/ijms232112913
Kuo, C., Tu, Y. K., Fang, S. L., Huang, Y. R., Chen, H. W., Yao, M. H., & Kuo, B. J. (2023) Early detection of drought stress in tomato from spectroscopic data: A novel convolutional neural network with feature selection. Chemometrics and Intelligent Laboratory Systems, 239, e104869. https://doi.org/10.1016/j.chemolab.2023.104869
Leite, R. S., Navarro, S. H., Nascimento, M. N., Potosme, N. M., Silva, A. L., & Santos, R. J. (2022) Proline and sodium nitroprusside increase the tolerance of Physalis peruviana L. plants to water deficit through chemical priming. Ciência e Agrotecnologia, 46, e004622. https://doi.org/10.1590/1413-7054202246004622
Liang, G., Liu, J., Zhang, J., & Guo, J. (2020) Effects of drought stress on photosynthetic and physiological parameters of tomato. Journal of the American Society for Horticultural Science, 145(1), 12-17. https://doi.org/10.21273/JASHS04725-19
Lima, G. S., Santos, J. B., Soares, L. A. A., Gheyi, H. R., Nobre, R. G., & Pereira, R. F. (2016) Irrigação com águas salinas e aplicação de prolina foliar em cultivo de pimentão ‘All Big’. Comunicata Scientiae, 7(4), 513-522. https://doi.org/10.14295/CS.v7i4.1671
Liu, Z., Lv, A., & Li, T. (2025). Intensified Drought Threatens Future Food Security in Major Food-Producing Countries. Atmosphere, 16(1), 34. https://doi.org/10.3390/atmos16010034
Mantovani, E. C., Delazari, F. T., Dias, L. E.; Assis, I. R., Vieira, G. H. S., & Landim, F. M. (2013) Yield and water use efficiency for two sweet potato cultivars depending on irrigation depths. Horticultura Brasileira, 31(4), 602-606. https://doi.org/10.1590/S0102-05362013000400015
Martinazzo, E. G., Perboni, A. T., Posso, D. A., Aumonde, T. Z., & Bacarin, M. A. (2015) Análise de crescimento e partição de assimilados em plantas de tomateiro cv. Micro-Tom submetidas ao nitrogênio e piraclostrobina. Semina: Ciências Agrárias, 36(5), 3001-3012. https://doi.org/10.5433/1679-0359.2015v36n5p3001
Ojewumi, A. W., Ayoola, S., Ope, A., & Iyanda, T. (2023) Proline as an osmolyte modulates changes in morphological and physiological attributes of Capsicum annuum L. under water stress. Annals of Science and Technology, 8(1), 51-58. https://doi.org/10.2478/ast-2023-0008
Prabha, V. V, & Deepak, M. T. (2025). Comprehensive review on the physiological adaptations of tomato (Solanum lycopersicum) to drought stress. Annual Research & Review in Biology, 40(5), 60–67. https://doi.org/10.9734/arrb/2025/v40i52240
Renzetti, M., Funck, D., & Trovato, M. (2025) Proline and ROS: A unified mechanism in plant development and stress response? Plants, 14(1), 2. https://doi.org/10.3390/plants14010002
Sarker, U., & Oba, S. (2018) Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Applied Biochemistry and Biotechnology, 186, 999-1016. https://doi.org/10.1007/s12010-018-2784-5
Semida, W. M., Abdelkhalik, A., Rady, M. O. A., Marey, R. A., & El-Mageed, T. A. A. (2020) Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Scientia Horticulturae, 272, 109580. https://doi.org/10.1016/j.scienta.2020.109580
Schmidt, D., Zamban, D. T., Prochnow, D., Caron, B. O., Souza, V. Q., Paula, G. M., & Cocco, C. (2017) Caracterização fenológica, filocrono e requerimento térmico de tomateiro italiano em dois ciclos de cultivo. Horticultura Brasileira, 35(1), 89-96. https://doi.org/10.1590/S0102-053620170114
Sharma, A., Wang, J., Xu, D., Tao, S., Chong, S., Yan, D., Li, Z., Yuan, H., & Zheng, B. (2020) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of The Total Environment, 717, e136675. https://doi.org/10.1016/j.scitotenv.2020.136675
Silao, F. G. S., Jiang, T., Veress, B. B., Kühbacher, A., Ryman, K., Uwamohoro, N., Jenull, S., Nogueira, F., Ward, M., Lion, T., Urban, C. F., Rupp, S., Kuchler, K., Chen, C., Peuckert C., & Ljungdahl, P. O. (2023). Proline catabolism is a key factor facilitating Candida albicans pathogenicity. PLoS Pathogens, 19(11), e1011677. https://doi.org/10.1371/journal.ppat.1011677
Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017) Fisiologia e desenvolvimento vegetal. 6ª ed. Artmed.
Tonhati, R., Mello, S. C., Momesso, P., & Pedroso, R. M. (2020) L-proline alleviates heat stress of tomato plants grown under protected environment. Scientia Horticulturae, 268, 109370. https://doi.org/10.1016/j.scienta.2020.109370
Zouari, M., Hassena, A. B., Trabelsi, L., Rouina, B. B., Decou, R., & Labrousse, P. (2019) Exogenous proline-mediated abiotic stress tolerance in plants: possible mechanisms. In: Hossain, M., Kumar, V., Burritt, D., Fujita, M., & Mäkelä, P. (Eds.) Osmoprotectant-mediated abiotic stress tolerance in plants. (pp. 99-121) Springer. https://doi.org/10.1007/978-3-030-27423-8_4
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Scientia Agropecuaria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).

