Caracterización composicional y estructural de once tipos de biomasa lignocelulósica y su potencial aplicación en la obtención de nanopolisacáridos y producción de polihidroxialcanoatos
DOI:
https://doi.org/10.17268/sci.agropecu.2024.038Palabras clave:
economía circular, biorefinería, residuos agrícolas, residuos agroindustriales, carbohidratos estructurales, cromatografía líquida de alta resolución, biopolímerosResumen
La valorización y utilización de la biomasa lignocelulósica proveniente del procesamiento de alimentos para la obtención de productos con valor añadido es crucial para mejorar la sostenibilidad y reducir costos de gestión de residuos, permitiendo transformar los desechos agroindustriales en recursos valiosos, contribuyendo a la economía circular. Este estudio se enfocó en la caracterización composicional y estructural de once tipos de biomasa lignocelulósica (BLC) con el fin de evaluar su potencial en la producción de nanopolisacáridos y polihidroxialcanoatos. Se analizaron parámetros como humedad, ceniza, proteínas, extractivos, carbohidratos estructurales y lignina en cáscaras de maracuyá, brácteas de alcachofa, cáscaras de espárrago, limón, naranja, semilla de palta, papa, yuca, bagazo de caña de azúcar, cáscara de arroz y paja de arroz. Los resultados mostraron que las cáscaras de frutas y otros residuos presentaron un alto contenido de extractivos (28,05%), mientras que el contenido de lignina y carbohidratos estructurales varió entre 69,66% y 30,53% y 22,2% y 8,84%, respectivamente. Además de la caracterización, se exploró el potencial de esta BLC para la producción de biopolímeros, destacando su relevancia en diversas industrias como la alimentaria y la ingeniería de materiales. En este sentido, estos hallazgos subrayan la importancia de utilizar recursos naturales locales de forma sostenible, abriendo nuevas oportunidades para desarrollar aplicaciones innovadoras como emulsiones pickering, envases biodegradables, aerogeles, hidrogeles y alimentos funcionales. Estas aplicaciones representan áreas prometedoras para futuras investigaciones y desarrollo tecnológico.
Citas
Ahmad, A. N. S., Sofian-Seng, N.-S., Othaman, R., Abdul, H., Mohd, N. S., Lim, S. J., & Wan, W. A. (2023). A Review on Agro-industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications. Food Reviews International, 39(2), 663-688. https://doi.org/10.1080/87559129.2021.1926478
Alcaide, I. V., Hamdi, A., Guilleín-Bejarano, R., Jiménez-Araujo, A., & Rodríguez-Arcos, R. (2023). Sustainable valorization of co-products from asparagus cultivation by obtaining bioactive compounds. Frontiers in plant science, 14, 1199436.
Aoudi, B., Boluk, Y., & Gamal El-Din, M. (2022). Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. Science of The Total Environment, 843, 156903. https://doi.org/10.1016/j.scitotenv.2022.156903
Ayala, J. R., Montero, G., Coronado, M. A., García, C., Curiel-Alvarez, M. A., León, J. A., Sagaste, C. A., & Montes, D. G. (2021). Characterization of orange peel waste and valorization to obtain reducing sugars. Molecules, 26(5), 1348.
Baite, T. N., Purkait, M. K., & Mandal, B. (2023). Synthesis of lignin from waste leaves and its potential application for bread packaging: A waste valorization approach. International Journal of Biological Macromolecules, 235, 123880. https://doi.org/10.1016/j.ijbiomac.2023.123880
Barja, F. (2021). Bacterial nanocellulose production and biomedical applications. Journal of Biomedical Research, 35(4), 310.
Bilal, M., Qamar, S. A., Qamar, M., Yadav, V., Taherzadeh, M. J., Lam, S. S., & Iqbal, H. M. N. (2024). Bioprospecting lignin biomass into environmentally friendly polymers—Applied perspective to reconcile sustainable circular bioeconomy. Biomass Conversion and Biorefinery, 14(4), 4457-4483. https://doi.org/10.1007/s13399-022-02600-3
Cazón, P., & Vázquez, M. (2021). Bacterial cellulose as a biodegradable food packaging material: A review. Food Hydrocolloids, 113, 106530.
Chieng, B. W., Lee, S. H., Ibrahim, N. A., Then, Y. Y., & Loo, Y. Y. (2017). Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers, 9(8), 355.
Daoud, L., & Ali, M. B. (2020). Halophilic microorganisms: Interesting group of extremophiles with important applications in biotechnology and environment. En Physiological and biotechnological aspects of extremophiles (pp. 51-64). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128183229000058
De Souza, L., Manasa, Y., & Shivakumar, S. (2020). Bioconversion of lignocellulosic substrates for the production of polyhydroxyalkanoates. Biocatalysis and Agricultural Biotechnology, 28, 101754.
Dórame-Miranda, R. F., Gámez-Meza, N., Medina-Juárez, L. Á., Ezquerra-Brauer, J. M., Ovando-Martínez, M., & Lizardi-Mendoza, J. (2019). Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydrate Polymers, 207, 91-99. https://doi.org/10.1016/j.carbpol.2018.11.067
Goñi, I., García-Alonso, A., Alba, C., Rodríguez, J. M., Sánchez-Mata, M. C., Guillén-Bejarano, R., & Redondo-Cuenca, A. (2024). Composition and Functional Properties of the Edible Spear and By-Products from Asparagus officinalis L. and Their Potential Prebiotic Effect. Foods, 13(8), 1154.
Goodman, B. A. (2020). Utilization of waste straw and husks from rice production: A review. Journal of Bioresources and Bioproducts, 5(3), 143-162.
Gorgieva, S., Jančič, U., Cepec, E., & Trček, J. (2023). Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. International journal of biological macromolecules, 244, 125368.
Hames, B., Sluiter, A., & Scarlata, C. (2008). Determination of Protein Content in Biomass: Laboratory Analytical Procedure (LAP): Issue Date, 07/17/2005. National Renewable Energy Laboratory.
Hasanin, M. S., Abdelraof, M., Hashem, A. H., & El Saied, H. (2023). Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, 22(1), 24. https://doi.org/10.1186/s12934-023-02031-3
Hermiati, E., Wijaya, H., & Pramasari, D. A. (2024). Extraction, Isolation, Purification, and Potential Application of Xylose and Xylooligosaccharides from Lignocellulosic Biomass. En M. A. R. Lubis, S. H. Lee, E. Mardawati, S. Rahimah, P. Antov, R. Andoyo, Ľ. Krišťák, & B. Nurhadi (Eds.), Biomass Conversion and Sustainable Biorefinery (pp. 229-267). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7769-7_11
Iglesias-Montes, M. L., Soccio, M., Siracusa, V., Gazzano, M., Lotti, N., Cyras, V. P., & Manfredi, L. B. (2022). Chitin nanocomposite based on plasticized poly (lactic acid)/poly (3-hydroxybutyrate)(PLA/PHB) blends as fully biodegradable packaging materials. Polymers, 14(15), 3177.
Inayati, I., Puspita, R. I., & Fajrin, V. L. (2018). Extraction of pectin from passion fruit rind (Passiflora edulis var. Flavicarpa Degener) for edible coating. AIP conference proceedings, 1931(1). https://pubs.aip.org/aip/acp/article-abstract/1931/1/030002/831308
John, I., Muthukumar, K., & Arunagiri, A. (2017). A review on the potential of citrus waste for D -Limonene, pectin, and bioethanol production. International Journal of Green Energy, 14(7), 599-612. https://doi.org/10.1080/15435075.2017.1307753
Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7.999, https://github.com/kassambara/factoextra
Koller, M. (2017). Advances in polyhydroxyalkanoate (PHA) production. Bioengineering, 4(4), 88.
Kumari, R., Sakhrie, M., Kumar, M., Vivekanand, V., & Pareek, N. (2023). Enhanced production of bacterial cellulose employing banana peel as a cost-effective nutrient resource. Brazilian Journal of Microbiology, 54(4), 2745-2753. https://doi.org/10.1007/s42770-023-01151-7
Li, W., Cicek, N., Levin, D. B., Logsetty, S., & Liu, S. (2020). Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing applications. Journal of Biomaterials Science, Polymer Edition, 31(3), 394-406. https://doi.org/10.1080/09205063.2019.1693882
Liang, S., & McDonald, A. G. (2015). Anaerobic digestion of pre-fermented potato peel wastes for methane production. Waste management, 46, 197-200.
Lo, J. S. C., Chen, X., Chen, S., Miao, Y., Daoud, W. A., Tso, C. Y., Firdous, I., Deka, B. J., & Lin, C. S. K. (2024). Fabrication of biodegradable PLA-PHBV medical textiles via electrospinning for healthcare apparel and personal protective equipment. Sustainable Chemistry and Pharmacy, 39, 101536.
Lopresto, C. G., Meluso, A., Di Sanzo, G., & Calabrò, V. (2018). Lemonene Recovery from Waste Lemon Peels with Supercritical Extraction. En A. Kallel, M. Ksibi, H. Ben Dhia, & N. Khélifi (Eds.), Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (pp. 1147-1149). Springer International Publishing. https://doi.org/10.1007/978-3-319-70548-4_331
MacLellan, J., Chen, R., Yue, Z., Kraemer, R., Liu, Y., & Liao, W. (2017). Effects of protein and lignin on cellulose and xylan anaylses of lignocellulosic biomass. Journal of Integrative Agriculture, 16(6), 1268-1275.
Mahato, R. P., Kumar, S., & Singh, P. (2023). Production of polyhydroxyalkanoates from renewable resources: A review on prospects, challenges and applications. Archives of Microbiology, 205(5), 172. https://doi.org/10.1007/s00203-023-03499-8
Mamma, D., & Christakopoulos, P. (2014). Biotransformation of Citrus By-Products into Value Added Products. Waste and Biomass Valorization, 5(4), 529-549. https://doi.org/10.1007/s12649-013-9250-y
Marx, S., & Radebe, L. J. (2018). Microwave-assisted recovery of monomeric sugars from an acidic steam treated wood hydrolysate. Heliyon, 4(11). https://www.cell.com/heliyon/fulltext/S2405-8440(18)33731-9
Mhgub, I. M., Hefnawy, H. T., Gomaa, A. M., & Badr, H. A. (2018). Chemical composition, antioxidant activity and structure of pectin and extracts from lemon and orange peels. Zagazig Journal of Agricultural Research, 45(4), 1395-1404.
Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo De Medeiros, G., Do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815
Narisetty, V., Cox, R., Bommareddy, R., Agrawal, D., Ahmad, E., Pant, K. K., Chandel, A. K., Bhatia, S. K., Kumar, D., & Binod, P. (2022). Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustainable Energy & Fuels, 6(1), 29-65.
Nascimento, E. S., Barros, M. O., Cerqueira, M. A., Lima, H. L., de Fatima Borges, M., Pastrana, L. M., Gama, F. M., Rosa, M. F., Azeredo, H. M., & Gonçalves, C. (2021). All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packaging and Shelf Life, 29, 100715.
Núñez-Gómez, V., San Mateo, M., González-Barrio, R., & Periago, M. J. (2024). Chemical Composition, Functional and Antioxidant Properties of Dietary Fibre Extracted from Lemon Peel after Enzymatic Treatment. Molecules, 29(1), 269.
Ogrizek, L., Lamovšek, J., Čuš, F., Leskovšek, M., & Gorjanc, M. (2021). Properties of bacterial cellulose produced using white and red grape bagasse as a nutrient source. Processes, 9(7), 1088.
Oliver-Ortega, H., Evon, P., Espinach, F. X., Raynaud, C., & Méndez, J. A. (2024). Polyhydroxy-3-Butyrate (PHB) Composite Materials Reinforced with Barley Waste Straw Fibres for Agriculture Applications: Production, Characterization and Scale-Up Analysis. Materials, 17(8), 1901. https://doi.org/10.3390/ma17081901
Ona, J. I., Halling, P. J., & Ballesteros, M. (2019). Enzyme hydrolysis of cassava peels: Treatment by amylolytic and cellulolytic enzymes. Biocatalysis and Biotransformation, 37(2), 77-85. https://doi.org/10.1080/10242422.2018.1551376
Órbenes, G., Rodríguez-Seoane, P., Torres, M. D., Chamy, R., Zúñiga, M. E., & Domínguez, H. (2021). Valorization of artichoke industrial by-products using green extraction technologies: Formulation of hydrogels in combination with paulownia extracts. Molecules, 26(14), 4386.
Ortiz-Sanchez, M., Solarte-Toro, J. C., Orrego-Alzate, C. E., Acosta-Medina, C. D., & Cardona-Alzate, C. A. (2021). Integral use of orange peel waste through the biorefinery concept: An experimental, technical, energy, and economic assessment. Biomass Conversion and Biorefinery, 11(2), 645-659. https://doi.org/10.1007/s13399-020-00627-y
Pecha, M. B., & Garcia-Perez, M. (2020). Chapter 29-pyrolysis of lignocellulosic biomass: Oil, char, and gas, Editor (s): Anju Dahiya, bioenergy. Academic Press.
Pereira, B., Marcondes, W. F., Carvalho, W., & Arantes, V. (2021). High yield biorefinery products from sugarcane bagasse: Prebiotic xylooligosaccharides, cellulosic ethanol, cellulose nanofibrils and lignin nanoparticles. Bioresource Technology, 342, 125970.
Phonphuak, N., & Chindaprasirt, P. (2015). Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. Eco-efficient masonry bricks and blocks, 103-127.
Phothong, N., Boontip, T., Chouwatat, P., Aht-Ong, D., & Napathorn, S. C. (2024). Preparation and characterization of astaxanthin-loaded biodegradable polyhydroxybutyrate (PHB) microbeads for personal care and cosmetic applications. International Journal of Biological Macromolecules, 257, 128709.
Priyadarshi, R., Ghosh, T., Purohit, S. D., Prasannavenkadesan, V., & Rhim, J.-W. (2024). Lignin as a sustainable and functional material for active food packaging applications: A review. Journal of Cleaner Production, 143151.
Rahmani, Z., Khodaiyan, F., Kazemi, M., & Sharifan, A. (2020). Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. International Journal of Biological Macromolecules, 147, 1107-1115.
Reyes, M. M., Gómez-Sánchez, I., & Espinoza, C. M. (2017). Tablas peruanas de composición de alimentos. Instituto Nacional de Salud. https://repositorio.ins.gob.pe///handle/20.500.14196/1034
Ruiz-Aceituno, L., García-Sarrió, M. J., Alonso-Rodriguez, B., Ramos, L., & Sanz, M. L. (2016). Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food chemistry, 196, 1156-1162.
Saba, B., Bharathidasan, A. K., Ezeji, T. C., & Cornish, K. (2023). Characterization and potential valorization of industrial food processing wastes. Science of The Total Environment, 868, 161550. https://doi.org/10.1016/j.scitotenv.2023.161550
Sampaolesi, S., Briand, L. E., Saparrat, M. C. N., & Toledo, M. V. (2023). Potentials of Biomass Waste Valorization: Case of South America. Sustainability, 15(10), Article 10. https://doi.org/10.3390/su15108343
Sandoval-Contreras, T., González Chávez, F., Poonia, A., Iñiguez-Moreno, M., & Aguirre-Güitrón, L. (2023). Avocado Waste Biorefinery: Towards Sustainable Development. Recycling, 8(5), 81. https://doi.org/10.3390/recycling8050081
Senthilkumar, S. R., Ashokkumar, B., Raj, K. C., & Gunasekaran, P. (2005). Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresource Technology, 96(12), 1380-1386.
Sharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and modifications. Polymer, 212, 123161.
Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, 2-5.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of ash in biomass laboratory analytical procedure. National Renewable Energy Laboratory Analytical Procedure, Golden, CO, 19.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, Ch., Sluiter, J., Templeton, D., & Crocker, D. (2008a). Determination of structural carbohydrates and lignin in biomass: Laboratory analytical procedure (LAP). In Technical Report NREL/TP-510-42618. National Renewable Energy Laboratory Golden, CO, USA., 1617(1), 1-16.
Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008b). Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005. Technical Report.
Stoica, M. (2020). Biodegradable nanomaterials for drink packaging. En Nanotechnology in the Beverage Industry (pp. 609-632). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128199411000213
Tateishi, A., Shiba, H., Ogihara, J., Isobe, K., Nomura, K., Watanabe, K., & Inoue, H. (2007). Differential expression and ethylene regulation of β-galactosidase genes and isozymes isolated from avocado (Persea americana Mill.) fruit. Postharvest Biology and Technology, 45(1), 56-65.
Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.00392
Turan, O., Isci, A., Yılmaz, M. S., Tolun, A., & Sakiyan, O. (2024). Microwave-assisted extraction of pectin from orange peel using deep eutectic solvents. Sustainable Chemistry and Pharmacy, 37, 101352.
Ul-Islam, M., Alhajaim, W., Fatima, A., Yasir, S., Kamal, T., Abbas, Y., Khan, S., Khan, A. H., Manan, S., & Ullah, M. W. (2023). Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications. International Journal of Biological Macromolecules, 231, 123269.
Vaishnav, A., & Choudhary, D. K. (Eds.). (2021). Microbial Polymers: Applications and Ecological Perspectives. Springer Singapore. https://doi.org/10.1007/978-981-16-0045-6
Wang, W., Du, G., Li, C., Zhang, H., Long, Y., & Ni, Y. (2016). Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion. Carbohydrate Polymers, 151, 1-8.
Wickham, H., et al. (2019). Welcome to the Tidyverse. J. Open Source Softw., 4, 1686. https://doi.org/10.21105/joss.01686
Xu, H., Sanchez-Salvador, J. L., Blanco, A., Balea, A., & Negro, C. (2023). Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties. Carbohydrate Polymers, 319, 121168.
Ye, X., Zhang, Y., Liu, T., Chen, Z., Chen, W., Wu, Z., Wang, Y., Li, J., Li, C., & Jiang, T. (2022). Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 209, 1553-1561.
Zhang, F., Shen, R., Li, N., Yang, X., & Lin, D. (2023). Nanocellulose: An amazing nanomaterial with diverse applications in food science. Carbohydrate Polymers, 304, 120497. https://doi.org/10.1016/j.carbpol.2022.120497
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).