Physico-chemical, thermal and rheological characteristics of starch isolated from four commercial potatoes cultivars

Autores/as

  • J.A. Sanchez-González Universidad Nacional de Trujillo http://orcid.org/0000-0002-9264-6268
  • C. Echeverria Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo, Perú.
  • L. Lescano Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo, Perú. http://orcid.org/0000-0002-7359-1134
  • G. Linares Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo, Perú. http://orcid.org/0000-0003-3889-4831
  • H.L. Arteaga-Miñano Applied and Computational Physic Laboratory, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga-SP, Brazil. http://orcid.org/0000-0003-1425-3757
  • J. Soriano-Colchado Escuela de Ingeniería en Industrias Alimentarias, Facultad de Ciencias Agrarias, Universidad Privada Antenor Orrego, Trujillo, Perú.
  • G. Barraza-Jáuregui Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo, Perú. http://orcid.org/0000-0002-0376-2751

DOI:

https://doi.org/10.17268/sci.agropecu.2019.01.07

Palabras clave:

Potatoes starch, amylose content, gelatinization, crystallinity, pasting, viscoelastic.

Resumen

The physical-chemical, thermal and rheological properties of starches isolated from four commercial potato cultivars (Colparina, Huayro, Canchan and Yungay) were evaluated and characterized. The starches presented ovoid and spherical shapes, with average size from 20.08 ± 2.48 to 25.33 ± 6.54 μm and B-type granules, with amylose content from 15.49 ± 2.02 to 32.10 ± 0.14% and relative crystallinity, between 34.6 and 37.3%. The rheological properties measured using a dynamic rheometer, showed predominance storage module (G’) on the loss module (G’’) during the frequency range (0.01 - 3.20 Hz) studied, which would classify them as weak gels. The starches presented low syneresis, high clarity, pasting temperature from 65.70 ± 0.31 °C to 67.70 ± 0.23 °C, gelatinization start temperature (To); peak temperature (Tp); gelatinization final temperature (Tf) and gelatinization enthalpy (ΔH) values between 57.90 ± 0.24 and 62.23 ± 0.17 °C; 61.18 ± 0.01 and 64.85 ± 0.01 °C; 65.5 ± 0.31 and 68.34 ± 0.29 °C; 11.49 ± 0.8 and 15.43 ± 0.51 J/g, respectively. The starches evaluated had suitable properties to be used as ingredients in specific foods to improve their textural characteristics.

Citas

Abegunde, O.K.; Mu, T.-H.; Chen, J.-W.; Deng, F.-M. 2013. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloids 33(2): 169-177.

Aprianita, A.; Purwandari, U.; Watson, B.; Vasiljevic, T. 2009. Physico-chemical properties of flours and starches from selected commercial tubers available in Australia. International Food Research Journal 16(4): 507-520.

Aristizábal, J.; Sánchez, T.; Lorío, D.M. 2007. Guía técnica para producción y análisis de almidón de yuca: Organización de las Naciones Unidas para la Agricultura y la Alimentación Roma.

Atwell, W. 1988. The terminology and methodology associated with basic starch phenomena. Cereal foods world 33: 306-311.

Ayucitra, A. 2012. Preparation and characterisation of acetylated corn starches. International Journal of Chemical Engineering Applications 3(3): 156.

Berski, W.; Ptaszek, A.; Ptaszek, P.; Ziobro, R.; Kowalski, G.; Grzesik, M.; Achremowicz, B.J.C.P. 2011. Pasting and rheological properties of oat starch and its derivatives 83(2): 665-671.

Chung, H.-J.; Li, X.-Q.; Kalinga, D.; Lim, S.-T.; Yada, R.; Liu, Q. 2014. Physicochemical properties of dry matter and isolated starch from potatoes grown in different locations in Canada. Food research international 57: 89-94.

CIP. 2018. Datos y Cifras de la Papa, from https://cipotato.org/es/potato/potato-facts-and-figures/

Espinosa‐Solis, V.; Jane, J.l.; Bello‐Perez, L.A. 2009. Physicochemical characteristics of starches from unripe fruits of mango and banana. Starch‐Stärke 61(5): 291-299.

Gomand, S.; Lamberts, L.; Derde, L.; Goesaert, H.; Vandeputte, G.; Goderis, B.; Delcour, J. 2010. Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof. Food hydrocolloids (4): 307-317.

Grommers, H.E.; van der Krogt, D.A. 2009. Potato starch: production, modifications and uses. Starch (Third Edition): 511-539.

Hernández-Medina, M.; Torruco-Uco, J.G.; Chel-Guerrero, L.; Betancur-Ancona, D. 2008. Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Food Science and Technology 28(3): 718-726.

INEI. 2017. Producción de papa aumentó 9,0% en julio de 2017 Retrieved 09/01/2018, 2018, from https://www.inei.gob.pe/prensa/noticias/produccion-de-papa-aumento-90-en-julio-de-2017-9976/

Jiang, Q.; Gao, W.; Li, X.; Xia, Y.; Wang, H.; Wu, S.; Xiao, P. 2012. Characterizations of starches isolated from five different Dioscorea L. species. Food Hydrocolloids 29(1): 35-41.

Joshi, M.; Aldred, P.; McKnight, S.; Panozzo, J.; Kasapis, S.; Adhikari, R.; Adhikari, B.J.C.P. 2013. Physicochemical and functional characteristics of lentil starch 92(2): 1484-1496.

Karim, A.A.; Norziah, M.H.; Seow, C.C. 2000. Methods for the study of starch retrogradation. Food Chemistry 71(1): 9-36.

Kaur, A.; Singh, N.; Ezekiel, R.; Guraya, H.S. 2007. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry 101(2): 643-651.

Kaur, A.; Singh, N.; Ezekiel, R.; Sodhi, N.S. 2009. Properties of starches separated from potatoes stored under different conditions. Food Chemistry 114(4): 1396-1404.

Kong, X.; Kasapis, S.; Bertoft, E.; Corke, H. 2010. Rheological properties of starches from grain amaranth and their relationship to starch structure. Starch‐Stärke 62(6): 302-308.

Li, D.; Yang, N.; Jin, Y.; Guo, L.; Zhou, Y.; Xie, Z.; Xu, X. 2017. Continuous-flow electro-assisted acid hydrolysis of granular potato starch via inductive methodology. Food chemistry 229: 57-65.

Li, D.; Zhu, F.J.F.C. 2017. Physicochemical properties of kiwifruit starch. Food Chemistry 220: 129-136.

Lin, J.-H.; Kao, W.-T.; Tsai, Y.-C.; Chang, Y.-H. 2013. Effect of granular characteristics on pasting properties of starch blends. Carbohydrate polymers 98(2): 1553-1560.

Liu, Q.; Weber, E.; Currie, V.; Yada, R. 2003. Physicochemical properties of starches during potato growth. Carbohydrate Polymers 51(2): 213-221.

Lu, S.; Chen, J.J.; Chen, Y.K.; Lii, C.Y.; Lai, P.; Chen, H. H. 2011. Water mobility, rheological and textural properties of rice starch gel. Journal of Cereal Science 53(1): 31-36.

Martínez, P.; Málaga, A.; Betalleluz, I.; Ibarz, A.; Velezmoro, C. 2015. Caracterización funcional de almidones nativos obtenidos de papas (Solanum phureja) nativas peruanas. Scientia Agropecuaria 6(4): 291-301.

Medina, J.A.; Salas, J.C. 2008. Caracterización morfológica del granulo de almidón nativo: Apariencia, forma, tamaño y su distribución. Revista de ingeniería 27: 56-62.

Noda, T.; Tsuda, S.; Mori, M.; Takigawa, S.; Matsuura-Endo, C.; Saito, K.; Yamauchi, H. 2004. The effect of harvest dates on the starch properties of various potato cultivars. Food chemistry 86(1): 119-125.

Novelo‐Cen, L.; Betancur‐Ancona, D. 2005. Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch blends. Starch‐Stärke 57(9): 431-441.

Rao, M.A. 2014. Flow and functional models for rheological properties of fluid foods Rheology of Fluid, Semisolid, and Solid Foods (pp. 27-61): Springer.

Šimková, D.; Lachman, J.; Hamouz, K.; Vokál, B. 2013. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food chemistry 141(4): 3872-3880.

Singh, J.; McCarthy, O.J.; Singh, H. 2006. Physico-chemical and morphological characteristics of New Zealand Taewa (Maori potato) starches. Carbohydrate polymers 64(4): 569-581.

Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry 81(2): 219-231.

Torruco-Uco, J.; Betancur-Ancona, D. 2007. Physico-chemical and functional properties of makal (Xanthosoma yucatanensis) starch. Food Chemistry 101(4): 1319-1326.

Wang, L.; Xie, B.; Shi, J.; Xue, S.; Deng, Q.; Wei, Y.; Tian, B. 2010. Physicochemical properties and structure of starches from Chinese rice cultivars. Food Hydrocolloids 24(2-3): 208-216.

Received November 20, 2018.

Accepted February 15, 2019.

Corresponding author: gbarraza@unitru.edu.pe (G. Barraza-Jáuregui).

Publicado

2019-04-01

Cómo citar

Sanchez-González, J., Echeverria, C., Lescano, L., Linares, G., Arteaga-Miñano, H., Soriano-Colchado, J., & Barraza-Jáuregui, G. (2019). Physico-chemical, thermal and rheological characteristics of starch isolated from four commercial potatoes cultivars. Scientia Agropecuaria, 10(1), 63-71. https://doi.org/10.17268/sci.agropecu.2019.01.07

Número

Sección

Artículos originales