Natural and commercial antimicrobial agents that inhibit the growth of Listeria monocytogenes strains


  • Meryemnur KOCADAĞ Ankara University, Engineering Faculty, Department of Food Engineering, 50th Year Settlement, 06830, Gölbaşı, Ankara.
  • Pinar SANLIBABA Department of Food Engineering, Engineering Faculty
  • Rezzan KASIM Kocaeli University, Faculty of Agriculture, Department of Horticulture, 41285, Kartepe, Kocaeli.
  • Mehmet Ufuk KASIM Kocaeli University, Faculty of Agriculture, Department of Horticulture, 41285, Kartepe, Kocaeli.


Palabras clave:

Listeria monocytogenes, natural antimicrobial compounds, antimicrobial activity, disc diffusion method


Vinegar products have gained popularity as an all-natural antimicrobial agent in recent years. In the present study, the antimicrobial susceptibility of 29 Listeria monocytogenes strains isolated from ready-to-eat foods was detected against natural and commercial antimicrobial agents, vinegar produced from different raw materials, lemon juice, sodium bicarbonate, and hydrogen peroxide, by using the disc diffusion method. Different concentrations of antimicrobial agents were tested against varying cell densities of the L. monocytogenes strain (105, 106, and 107 CFU/mL). The inhibition zone diameter was measured to evaluate the antimicrobial effects of antimicrobial agents on L. monocytogenes strains. The inhibition zone diameters of L. monocytogenes strains were 6.0–8.8 mm and 6.0–11.3 mm against traditional and commercial vinegar types, respectively. The commercial vinegar types showed higher antimicrobial efficacy than the conventional ones. The inhibition zone diameters of L. monocytogenes strains against carbonate, lemon juice, and hydrogen peroxide were 6.0, 6.0–9.0, and 33.9–51.9 mm, respectively. The antimicrobial efficacy of hydrogen peroxide was the highest among the tested antimicrobial agents. This study showed that vinegar products have potential to be utilized as natural antimicrobials on food-borne pathogens like L. monocytogenes.


Aktop, S., Aslan Canberi, H., Şentürk, E., & Şanlıbaba, P. (2020). Antibacterial activity of different essential oils on Listeria monocytogenes strains isolated from ready–to–eat foods. The Journal of Food, 45(5), 861-871.

Al-Rawi, A. M., Bahjet, S. A., & Al-Allaf, M. A. A. (2018). Novel natural disinfectants for contaminated cosmetic application tools. International Journal of Medical Sciences, 1(1), 23-30.

Altuntaş, S., & Korukluoğlu, M. (2018). Listeria monocytogenes in food facilities and new approaches for struggle. The Journal of Food, 43(1), 101–113.

Antoniewicz, J., Kochman, J., Jakubczyk, K., Kwiatkowski, P., Żwierełło, W., Skórka-Majewicz, M., & Janda, K. (2020). Antimicrobial properties, antioxidant activity and phenolic content of grape vinegars, 6th International Electronic Conference on Medicinal Chemistry, 1–30 November 2020, Poster Presentation, Poland.

Aydın, R. (2013). An investigation of antimicrobial proporties and antioxidant activities of mulberry vinegar which is naturally produce in Uzundere and İspir (Erzurum). Master Thesis, Ataturk University Graduate School of Natural and Applied Sciences Department of Biology, 77 pages, Erzurum.

Bakır, S., Devecioğlu, D., Kayacan, S., Toydemir, G., Karbancıoğlu-Güler, F., & Çapanoğlu, E. (2017). Investigating the antioxidant and antimicrobial activities of different kinds of vinegar. European Food Research and Technology, 243(12), 2083-2094.

Baldas, B., & Altuner, E. M. (2018). The antimicrobial activity of apple cider vinegar and grape vinegar, which are used as a traditional surface disinfectant for fruits and vegetables. Communications Faculty of Sciences University of Ankara Series C Biology, 27(1), 1-10.

Benedek, Cs., Szakolczi, O., Makai, G., Kiskó, G., & Kókai, Z. (2022). Evaluation of physicochemical, sensory, and antimicrobial properties of small-scale produced fruit vinegars. Acta Alimentaria, 51(1), 1-10.

Bingöl, E. B., Çetin, O., & Muratoğlu, K. (2011). Effect of lemon juice on the survival of Salmonella enteritidis and Escherichia coli in cig kofte (raw meatball). British Food Journal, 113, 1183-1194.

Budak, H. N. (2010). A Research on Compositional and Functional Properties of Vinegars Produced from Apple and Grape. Ph. D Thesis. Suleyman Demirel University Grauduate School of Applied and Natural Sciences Department of Food Engineering, 185 pages, Isparta.

Budiati, T., Wibisono, Y., Pambayun, R. A., Fahrezy, M. F., Ariyani, R., et al. (2020). Inhibition of Listeria monocytogenes by natural antimicrobial. Second International Conference on Food and Agriculture, 411(1), 012042.

Ekawati, E. R., & Darmanto, W. (2019). Lemon (Citrus limon) juice has antibacterial potential against the diarrhea-causing pathogen. Earth and Environmental Science, 217(1), 1–6.

Farber, J. M., Zwietering, M., Wiedmann, M., Schaffner, D., Hedberg, C. W., et al. (2021). Alternative approaches to the risk management of Listeria monocytogenes in low-risk foods. Food Control, 123, 1-26.

Fong, D., Gaulin, C., Lê, M. L., & Shum, M. (2011). Effectiveness of alternative antimicrobial agents for disinfection of hard surfaces. National Collaborating Centre for Environmental Health, 19, Vancouver.

González-Molina, E., Domínguez-Perles, R., Moreno, D. A., & García-Viguera, C. (2010). Natural bioactive compounds of Citrus limon for food and health. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 327-345.

Gündoğdu, M., Tunçtürk, M., Berk, S., Şekeroğlu, N., & Gezici, S. (2018). Antioxidant capacity and bioactive contents of mulberry species from the Eastern Anatolia region of Turkey. Indian Journal of Pharmaceutical Education and Research, 52(4), 96-101.

Iannetti, L., Schirone, M., Neri, D., Visciano, P., Acciari, V. A., et al. (2020). Listeria monocytogenes in poultry: Detection and strain characterization along an integrated production chain in Italy. Food Microbiology, 91, 1-7.

Kadiroğlu, P. (2018). FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. Journal of the Science of Food and Agriculture, 98(11), 4121-4127.

Kelebek, H., Kadiroğlu, P., Demircan, N. B., & Selli, S. (2017). Screening of bioactive components in grape and apple vinegars: Antioxidant and antimicrobial potential. Journal of the Institute of Brewing, 123(3), 407-416.

Kilonzo-Nthenge, A., & Liu, S. (2019). Antimicrobial efficacy of household sanitizers against artificially inoculated Salmonella on ready-to-eat spinach (Spinacia oleracea). Journal of Consumer Protection and Food Safety, 14(2), 105-112.

Labaiden, M., Kasai, H., Yoshimizu, M., & Direkbusrakom, S. (2013). Elimination of Escherichia coli from oysters using sodium bicarbonate. Walailak Journal of Science and Technology (WJST), 10(6), 601-606.

Magalhães, R., Mena, C., Ferreira, V., Silva, J., Almeida, G., Gibbs, P., & Teixeira, P. (2014). Bacteria: Listeria monocytogenes, In: Encyclopedia of Food Safety. Motarjemi, Y., Moy, G., Todd, E. (eds), pages: 450-461, Academic Press.

Matthews, K. R., Kniel, K. E., & Montville, T. J. (2017). Food Microbiology: An Introduction. ASM Press, page 569, Washington.

McLauchlin, J., Rees, C. E. D., & Dodd, C. E. R. (2014). Listeria monocytogenes and the genus Listeria. In: The Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., Stackebrandt, E. (eds.), Springer Berlin Heidelberg, 241–259.

National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 516892, Sodium Bicarbonate.

Nastou, A., Rhoades, J., Smirniotis, P., Makri, I., Kontominas, M., & Likotrafiti, E. (2012). Efficacy of household washing treatments for the control of Listeria monocytogenes on salad vegetables. International Journal of Food Microbiology, 159(3), 247-253.

Orsi, R. H., & Wiedmann, M. (2016). Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Applied Microbiology and Biotechnology, 100(12), 5273-5287.

Osek, J., Lachtara, B., & Wieczorek, K. (2022). Listeria monocytogenes – How This Pathogen Survives in Food-Production Environments? Frontiers in Microbiology, 13, 866462.

Ousaaid, D., Imtara, H., Laaroussi, H., Lyoussi, B., & Elarabi, I. (2021). An investigation of Moroccan vinegars: Their physicochemical properties and antioxidant and antibacterial activities. Journal of Food Quality, 6618444, 1-8.

Özdemir, G. B., Özdemir, N., Ertekin-Filiz, B., Gökırmaklı, Ç., Kök-Taş, T., & Budak, N. H. (2021). Volatile aroma compounds and bioactive compounds of hawthorn vinegar produced from hawthorn fruit (Crataegus tanacetifolia (lam.) pers.). Journal of Food Biochemistry, e13676, 1-14.

Öztürk, I., Çalışkan, O., Tornuk, F., Özcan, N., Yalçın, H., Baslar, M., & Sağdıç, O. (2015). Antioxidant, antimicrobial, mineral, volatile, physicochemical, and microbiological characteristics of traditional homemade Turkish vinegars. LWT-Food Science and Technology, 63(1), 144-151.

Ramos, B., Brandão, T. R., Teixeira, P., & Silva, C. L. (2014). Balsamic vinegar from Modena: An easy and effective approach to reduce Listeria monocytogenes from lettuce. Food Control, 42, 38-42.

Sibanda, T., & Buys, E.M. (2022). Listeria monocytogenes Pathogenesis:The Role of Stress Adaptation. Microorganisms, 10, 1522.

Szendy, M. (2021). Effect of micro biocides on Listeria monocytogenes. Doctoral Dissertation. The University of Bayreuth, Faculty of Biology, Chemistry, and Geosciences, 207 pages, Bayreuth.

Şanlıbaba, P., & Uymaz, B. (2015). Application of Bacteriophage for Biocontrol of Listeria monocytogenes in Foods. Academic Food Journal, 13(1), 81-88.

Şengün, I. Y., & Karapınar, M. (2005a). Elimination of Yersinia enterocolitica on carrots (Daucus carota L.) by using household sanitizers. Food Control, 16(10), 845-850.

Şengün, I. Y., & Karapınar, M. (2005b). Effectiveness of household natural sanitizers in the elimination of Salmonella typhimurium on the rocket (Eruca sativa Miller) and spring onion (Allium cepa L.). International Journal of Food Microbiology, 98(3), 319-323.

Şengün, İ. Y., & Kılıç, G. (2018). Microbiological, Physical, Chemical, Antiradical and Antimicrobial Properties of Mulberry Vinegar. Academic Food Journal, 16(2), 168-175.

Şengün, İ. Y., & Kılıç, G. (2020). Total phenolic content and antibacterial activity of homemade fig and mulberry vinegar. Eskişehir Technical University, Journal of Science and Technology C- Life Science and Biotechnology, 9(1), 89-97.

Waple, B. (2017). Sodium bicarbonate: The user-friendly blasting abrasive. Restoration and Remediation, 2, 1-3.

Yagnik, D., Serafin, V., & Shah, A. J. (2018). Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus, and Candida albicans; downregulating cytokine and microbial protein expression. Scientific Reports, 8(1), 1-12.

Yang, H., Kendall, P. A., Medeiros, L., & Sofos, J. N. (2009). Inactivation of Listeria monocytogenes, Escherichia coli O157: H7, and Salmonella typhimurium with compounds available in households. Journal of Food Protection, 72(6), 1201-1208.

Yang, J., Lee, D., Afaisen, S., & Gadi, R. (2013). Inactivation by lemon juice of Escherichia coli O157: H7, Salmonella enteritidis, and Listeria monocytogenes in beef marinating for the ethnic food kelaguen. International Journal of Food Microbiology, 160(3), 353-359.

Yavuz, M., & Korukluoğlu, M. (2010). The Importance of Listeria monocytogenes in Foods and Its Effect on Human Health. Journal of Agricultural Faculty of Uludag University, 24(1), 1-10.

Zhang, J., & Yang, H. (2017). Effects of potential organic compatible sanitizers on organic and conventional fresh-cut lettuce (Lactuca sativa var. Crispa L). Food Control, 72, 20-26.




Cómo citar

KOCADAĞ, M. ., SANLIBABA, P., KASIM, R. ., & KASIM, M. U. . (2022). Natural and commercial antimicrobial agents that inhibit the growth of Listeria monocytogenes strains. Scientia Agropecuaria, 13(4), 351-358.



Artículos originales