Aptitud climática para Coffea arabica L. ante eventos climáticos extremos: Importancia de la cobertura arbórea
DOI:
https://doi.org/10.17268/sci.agropecu.2022.005Palabras clave:
anomalías climáticas, fenología, índices de cambio climático, sistema agroforestal, tendencias climáticasResumen
Se prevén impactos negativos del cambio climático en la producción de Coffea arabica L. uno de los agroproductos tropicales más comercializados en el mundo. Sin embargo, la mayoría de los estudios trabajan con modelos de circulación global, siendo poco útiles en la toma de decisiones a escala de manejo de una finca. Ante ello, el objetivo de este estudio fue identificar la aptitud para el cultivo de C. arabica ante el cambio climático y cómo la cobertura arbórea mitiga los impactos del cambio climático en una parcela agroforestal. Se calcularon los índices de extremos climáticos (1961 a 2016 para Coatepec; 1985 a 2016 para Briones) y se realizó un análisis de tendencias (Mann-Kendall). Se monitoreó la temperatura en el interior de una parcela, y en un sitio abierto, durante dos años (2017-2019). Esto se relacionó con los requerimientos climáticos de C. arabica. Se identificaron tendencias de incremento (p<0,05) de las temperaturas mínima y mínima extrema anual en las dos estaciones cercanas a la parcela (0,24 y 0,69 °C·década-1 en Coatepec y 0,46 y 0,79 °C·década-1 en Briones). La temperatura máxima no presentó incrementos significativos, reduciendo la amplitud térmica. Tanto la precipitación anual y estacional muestran tendencias de incremento en intensidad. Todas estas condiciones siguen siendo aptas para el cultivo de C. arabica. A escala de parcela, se demuestra la importancia de la cobertura arbórea, que en este sistema agroforestal permite reducir la temperatura máxima 1,9 °C en comparación con un sitio abierto. Asimismo, la cobertura arbórea ha permitido mitigar eventos extremos.
Citas
Aguilar, E., Peterson, T. C., Ramı, P., Frutos, R., Retana, J. A., et al. (2005). Changes in precipitation and temperature extremes in Central America and northern South America , 1961–2003. Journal of Geophysical Research Atmospheres, 110, 1–15.
Alègre, C. (1959). Climates et caféiers d’Arabie. Agronomie Tropicale, 14, 23–58.
Alexander, L. V, Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres, 111(5), 1–22.
Alexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of Climatology, 6(6), 661–675.
Barradas, M. V., & Fanjul, F. (1984). La importancia de la cobertura arbórea en la temperatura del agroecosistema cafetalero. Biótica, 9(4), 415–421.
Barva, H. (2011). Guía técnica para el cultivo del café. Instituto del Café de Costa Rica, Centro de Investigaciones en Café CICAFE, 72.
Bellamy, A. S. (2011). Weed control practices on Costa Rican coffee farms: is herbicide use necessary for small-scale producers? Agriculture and Human Values, 28(2), 167–177.
Bote, A. D., & Struik, P. C. (2011). Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. Journal of Horticulture and Forestry, 3(11), 336–341.
Bunn, C., Läderach, P., Rivera, O., & Kirschke, D. (2015). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1–2), 89–101.
Caesar, J., Alexander, L. V, Trewin, B., Tse-ring, K., Sorany, L., et al. (2011). Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. International Journal of Climatology, 31(6), 791–801.
Camargo, M. B. (2010). The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia, 69, 239–247.
Constantino, L. M., Gil, Z. N., Montoya, E. C., & Benavides, P. (2021). Coffee berry borer (Hypothenemus hampei) emergence from ground fruits across varying altitudes and climate cycles, and the effect on coffee tree infestation. Neotropical Entomology, 50(3), 374–387.
Craparo, A. C. W., Van Asten, P. J. A., Läderach, P., Jassogne, L. T. P., & Grab, S. W. (2015). Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, 207, 1–10.
Da Silva, P., Giarolla, A., Chou, S. C., Silva, A. J. de P., & Lyra, A. de A. (2018). Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Regional Environmental Change, 18(3), 873–883.
DaMatta, F., Rahn, E., Läderach, P., Ghini, R., & Ramalho, J. C. (2019). Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Climatic Change, 152(1), 167–178.
DaMatta, F., & Ramalho, C. J. D. (2006). Impacts of drought and temperature stress on coffee physiology and production: A review. Brazilian Journal of Plant Physiology, 18(1), 55–81.
DaMatta, F., Ronchi, C., Maestri, M., & Barros, R. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19, 485–510.
Davis, A. P., Gargiulo, R., Almeida, I. N. das M., Caravela, M. I., Denison, C., & Moat, J. (2021). Hot coffee: The identity, climate profiles, agronomy, and beverage characteristics of Coffea racemosa and C. zanguebariae. Frontiers in Sustainable Food Systems, 5, 740137.
Davis, A. P., Mieulet, D., Moat, J., Sarmu, D., & Haggar, J. (2021). Arabica-like flavour in a heat-tolerant wild coffee species. Nature Plants, 7(4), 413–418.
de Souza, H. N., de Goede, R. G. M., Brussaard, L., Cardoso, I. M., Duarte, E. M. G., Fernandes, R. B. A., Gomes, L. C., & Pulleman, M. M. (2012). Protective shade, tree diversity and soil proper-ties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems & Environment, 146, 179–196.
de Souza, R. G., de Oliveira Aparecido, L. E., de Souza, P. S., Lamparelli, R. A. C., & dos Santos, É. R. (2020). Climate and natural quality of Coffea arabica L. drink. Theoretical and Applied Climatology, 141(1), 87–98.
Dufour, B. P., Kerana, I. W., & Ribeyre, F. (2021). Population dynamics of Hypothenemus hampei (Ferrari) according to the phenology of Coffea arabica L. in equatorial conditions of North Sumatra. Crop Protection, 146, 105639.
Esperón-Rodríguez, M., Bonifacio-Bautista, M., & Barradas, V. L. (2016). Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico. Ambio, 45(2), 146–160.
FAOSTAT. (2021). Database Collections. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/faostat/es/#home
Ferreira, W. P. M., Ribeiro Júnior, J. I., & de Fátima Souza, C. (2019). Climate change does not impact on Coffea arabica yield in Brazil. Journal of the Science of Food and Agriculture, 99(12), 5270–5282.
García, E. (2004). Modificaciones al sistema de clasificación köppen. Instituto de Geografía-UNAM.
Gay, C., Estrada, F., Conde, C., Eakin, H., & Villers, L. (2006). Potential impacts of climate change on agriculture: A case of study of coffee production in Veracruz, Mexico. Climatic Change, 79(3–4), 259–288.
Giannini, T. C., Costa, W. F., Cordeiro, G. D., Imperatriz-Fonseca, V. L., Saraiva, A. M., Biesmeijer, J., & Garibaldi, L. A. (2017). Projected climate change threatens pollinators and crop production in Brazil. PLoS ONE, 12(8), 1–13.
Granados-Ramírez, R., Medina, B. M. de la P., & Peña, M. V. (2014). Change and climate change in the slope of the Gulf of Mexico. Impacts on coffee production. Revista Mexicana de Ciencias Agrícolas, 5(3), 473–485.
Guijarro, J. A. (2018). Homogenization of climatic series with Climatol. https://doi.org/10.13140/RG.2.2.27020.41604
Guijarro, J. A. (2019). Package climatol. Available in: http://ftp5.gwdg.de/pub/misc/cran/web/packages/climatol/climatol.pdf
Haggar, J., & Schepp, K. (2012). Coffee and climate change. Impacts and options for adaption in Brazil, Guatemala, Tanzania and Vietnam. In Climate Change, Agriculture and Natural Resource. (Issue 4).
Hao, Z., AghaKouchak, A., Nakhjiri, N., & Farahmand, A. (2014). Global integrated drought monitoring and prediction system. Scientific Data, 1, 51–66.
Hinnah, F. D., Sentelhas, P. C., Meira, C. A. A., & Paiva, R. N. (2018). Weather-based coffee leaf rust apparent infection rate modeling. International Journal of Biometeorology, 62(10), 1847–1860.
Holland, M. B., Shamer, S. Z., Imbach, P., Zamora, J. C., Moreno, C. M., et al. (2017). Mapping adaptive capacity and smallholder agriculture: applying expert knowledge at the landscape scale. Climatic Change, 141(1), 139–153.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (V. Masson-Delmotte, P. Zhai, A. Priani, S. L. Connors, C. Péan, & S. Berger (eds.)). Cambridge University Press.
Jassogne, L., Läderach, P., & Van Asten, P. (2013). The impact of climate change on coffee in Uganda: Lessons from a case study in the Rwenzori Mountains. Oxfam Policy and Practice: Climate Change and Resilience, 9(1), 51–66.
Jones, P. D., & Hulme, M. (1996). Calculating regional climatic time series for temperature and precipitation: methods and illustrations. International Journal of Climatology, 16(4), 361–377.
Kutywayo, D., Chemura, A., Kusena, W., Chidoko, P., & Mahoya, C. (2013). The impact of climate change on the potential distribution of agricultural pests: the case of the coffee white stem borer (Monochamus leuconotus P.) in Zimbabwe. PLoS One, 8(8), 1–11.
Läderach, P., Haggar, J., Lau, C., Eitzinger, A., Ovalle, O., Baca, M., Jarvis, A., & Lundy, M. (2013). Mesoamerican coffee: building a climate change adaptation strategy. International Center for Tropical Agriculture, 1(2), 1–4.
Läderach, P., Ramirez–Villegas, J., Navarro-Racines, C., Zelaya, C., Martinez–Valle, A., & Jarvis, A. (2017). Climate change adaptation of coffee production in space and time. Climatic Change, 141(1), 47–62.
Libert, A. A., Ituarte-Lima, C., & Elmqvist, T. (2020). Learning from social–ecological crisis for legal resilience building: multi-scale dynamics in the coffee rust epidemic. Sustainability Science, 15(2), 485–501.
Lin, B. B. (2010). The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agricultural and Forest Meteorology, 150(4), 510–518.
Lin, B. B., Perfecto, I., & Vandermeer, J. (2008). Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. BioScience, 58(9), 847–854.
Moguel, P., & Toledo, V. (1999). Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology, 13, 11–21.
Moreira, S. L. S., Pires, C. V, Marcatti, G. E., Santos, R. H. S., Imbuzeiro, H. M. A., & Fernandes, R. B. A. (2018). Intercropping of coffee with the palm tree, macauba, can mitigate climate change effects. Agricultural and Forest Meteorology, 256–257, 379–390.
Ochieng, J., Kirimi, L., & Mathenge, M. (2016). Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS - Wageningen Journal of Life Sciences, 77(2016), 71–78.
Omondi, P. A., Awange, J. L., Forootan, E., Ogallo, L. A., Barakiza, R., et al. (2014). Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. International Journal of Climatology, 34(4), 1262–1277.
Ovalle-Rivera, O., Läderach, P., Bunn, C., Obersteiner, M., & Schroth, G. (2015). Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE, 10(4), 1–13.
Ramachandran, P. K., Mohan, K. B., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10–23.
Ruiz, J. A., Garcia, G., González, I. J., Flores, H. E., Ramírez, G., Ortíz, C., Byerly, K. F., & Martínez, R. A. (2013). Requerimientos agroecológicos de cultivos (2a Ed.). Libro Técnico Núm. 3. INIFAP. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias-CIRPAC-Campo Experimental Centro Altos de Jalisco.
Serrano-Barrios, L., Vicente-Serrano, S. M., Flores-Magdaleno, H., Tijerina-Chávez, L., & Vázquez-Soto, D. (2016). Variabilidad espacio-temporal de las sequías en la cuenca pacífico norte de México (1961-2010). Cuadernos de Investigacion Geografica, 42(1), 185–204.
Shibu, J. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems, 76(1), 1–10.
Skansi, M. de los M., Brunet, M., Sigró, J., Aguilar, E., Arevalo Groening, J. A., et al. (2013). Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change, 100, 295–307.
SMN. (2019). Normales climatológicas por estación. Estado de Veracruz: Servicio Meteorológico Nacional, CONAGUA. https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=ver
Stevanović, M., Popp, A., Lotze-Campen, H., Dietrich, J. P., Müller, C., et al (2016). The impact of high-end climate change on agricultural welfare. Science Advances, 2(8), 1–10.
Supari, Tangang, F., Juneng, L., & Aldrian, E. (2017). Observed changes in extreme temperature and precipitation over Indonesia. International Journal of Climatology, 37(4), 1979–1997.
Valencia, V., García-Barrios, L., Sterling, E. J., West, P., Meza-Jiménez, A., & Naeem, S. (2018). Smallholder response to environmental change: Impacts of coffee leaf rust in a forest frontier in Mexico. Land Use Policy, 79, 463–474.
Van Kanten, R., & Vaast, P. (2006). Transpiration of arabica coffee and associated shade tree species in sub-optimal, low-altitude conditions of Costa Rica. Agroforestry Systems, 67(2), 187–202.
Villers, L., Arizpe, N., Orellana, R., Conde, C., & Hernandez, J. (2009). Impactos del cambio climático en la floración y desarrollo del fruto del café en Veracruz, Mexico. Interciencia, 34(5), 322–329.
Wagner, S., Jassogne, L., Price, E., Jones, M., & Preziosi, R. (2021). Impact of climate change on the producction of Coffea arabica at Mt. Kilimanjaro, Tanzania. Agriculture, 11(1), 53.
Yirga, M. (2020). Potential Effects, Biology and Management options of coffee leaf rust (Hemileia Vastatrix): A review. International Journal of Forestry and Horticulture, 6(1), 19–31.
Zhang, X., & Yang, F. (2004). RClimDex (1.0) user guide. Climate Research Branch Environment Canada, Downsview, Ontario, Canada, 22.
Zullo, J., Pinto, H. S., Assad, E. D., & de Ávila, A. M. H. (2011). Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Climatic Change, 109(3–4), 535–548.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).