Optimización del proceso de cocción de quinua utilizando el diseño 3k y la función de deseabilidad: Grado de gelatinización, índice de absorción de agua, índice de solubilidad y desprendimiento de cotiledones

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2020.03.10

Palabras clave:

Chenopodium quinoa, cocción a vapor, optimización, superficie de respuesta, diseño factorial.

Resumen

Se realizó la optimización del proceso de cocción de quinua con vapor, empleando un diseño de superficie de respuesta (RSM) factorial de 3 niveles: 3k y para encontrar la región optima se usó la metodología de optimización de respuestas múltiples de función de deseabilidad (Dx), que son herramientas eficaces para optimizar las variables de un proceso, evaluando la maximización del índice de absorción de agua (WAI), índice de solubilidad en agua (WSI), grado de gelatinización (GE) y la minimización del desprendimiento de cotiledones (DC) de quinua (Chenopodium quinoa Willd). El equipo utilizado fue un cocinador vertical con generador de vapor, las variables de cocción en estudio, la presión de vapor y el tiempo de cocinado. Los valores óptimos de proceso fueron: Presión 1,5 kgf.cm-2 y tiempo 8 minutos para las mejores características de la quinua cocida WSI de 26,411%, WAI de 7,960 (g.g-1), GE de 89,245% y CD de 18,40%, el valor de la función de deseabilidad como indicador de las respuestas múltiples fue de 0,798. El conocimiento de estas características pueden ser un valioso complemento en el proceso de cocción y así contribuir a la mejora de la calidad de los cereales cocidos.

Citas

Ahromrit, A.; Ledward, D.A.; Niranjan, K. 2007. Kinetics of high pressure facilitated starch gelatinization in Thai glutinous rice. Journal of Food Engineering 79(3): 834-841.

Ai, Y.; Jane, J.L. 2015. Gelatinization and rheological properties of starch. Starch - Stärke 67(3-4): 213-224.

Al-Rabadi, G.J.; Torley, P.J.; Williams, B.A.; et al. 2011. Effect of extrusion temperature and pre-extrusion particle size on starch digestion kinetics in barley and sorghum grain extrudates. Animal Feed Science and Technology 168(3): 267-279.

Anderson, R.A.; Conway, H.F.; Peplinski, A.J. 1970. Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. Starch - Stärke 22(4): 130-135.

Araujo, C.; Rincón, A.M.; Padilla, F. 2004. Caracterización del almidón nativo de Dioscorea bulbifera L. Archivos Latinoamericanos de Nutrición 54(2): 241-245

Arzapalo, D.; Huamán, K.B. 2014. Extracción y caracterización de almidón de tres variedades de quinua (Chenopodium quinoa Willd) negra collana, pasankalla roja y blanca Junin. Universidad Nacional del Centro del Perú. 114-116.

Bauer, B.A.; Knorr, D. 2005. The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinization as pressure time temperature indicator for high hydrostatic pressure processing. Journal of food engineering 68(3): 329-334.

Cai, C.; Cai, J.; Zhao, L.; et al. 2014. In situ gelatinization of starch using hot stage microscopy. Food Science and Biotechnology 23(1): 15-22.

Cámara, M.S.; De Zan, M.M.; Vera Candiote, L.; et al. 2016. Diseño experimental y optimización de sistemas con multiples respuestas. Facultad de bioquímica y ciencias biológicas. Universidad Nacional del Litoral. Argentina.

Chen, P.; Xie, F.; Zhao, L.; et al. 2017. Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocolloids 69: 359-368.

Darvishi, H.; Farhudi, Z.; Behroozi-Khazaei, N. 2020. Multi-objective optimization of savory leaves drying in continuous infrared-hot air dryer by response surface methodology and desirability function. Computers and Electronics in Agriculture 168: 105-112.

Ding, Q.B.; Ainsworth, P.; Tucker, G.; et al. 2005. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice based expanded snacks. J. Food Eng. 66: 283-289.

Dun, H.; Liang, H.; Zhan, F.; et al. 2020. Influence of O/W emulsion on gelatinization and retrogradation properties of rice starch. Food Hydrocolloids 103: 105-152.

Ekielski, A.; Żelaziński, T.; Siwek, A.; et al. 2020. Formulation and Characterization of Corn Grits- Propylene Glycol Extrudates. Materials Today: Proceedings 21: 1772-1780.

Graf, B.L.; Rojas-Silva, P.; Rojo, L.E.; et al. 2015. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci Food Saf 14(4): 431-445.

Guha, M.; Ali, S.Z.; Bhattacharya, S. 1997. Twin-screw extrusion of rice flour without a die: effect of barrel temperature and screw speed on extrusion and extrudate characteristics. Journal of Food Engineering 32(3): 251-267.

Huang, S.L.; Jao, C.L.; Hsu, K.C. 2009. Effects of hydrostatic pressure/heat combinations on water uptake and gelatinization characteristics of japonica rice grains: a kinetic study. J Food Sci 74(8): 442-448.

Jan, K.N.; Panesar, P.S.; Rana, J.C.; et al. 2017. Structural, thermal and rheological properties of starches isolated from Indian quinoa varieties. International Journal of Biological Macromolecules 102: 315-322.

Ji, Z.; Yu, L.; Liu, H.; et al. Food Hydrocolloids Effect of pressure with shear stress on gelatinization of starches with different amylose / amylopectin ratios. Food Hydrocolloids 72: 331-337.

Jiang, F.; Du, C.; Guo, Y.; et al. 2020. Physicochemical and structural properties of starches isolated from quinoa varieties. Food Hydrocolloids 101: 105-115.

Jin, Z.; Hsieh, F.; Huff, H.E.; 1995. Effects of soy fiber, salt, sugar, and screw speed on physical properties and microstructure of cornmeal extrudate. J. Cereal Sci. 22: 185–194.

Kaspchak, E.; Oliveira, M.A.S.D.; Simas, F.F.; et al. 2017. Determination of heat-set gelation capacity of a quinoa protein isolate (Chenopodium quinoa) by dynamic oscillatory rheological analysis. Food Chem 232: 263-271.

Kirby, A.R.; Ollett, A.L.; Parker, R.; et al. 1988. An experimental study of screw configuration effects in the twin-screw extrusion-cooking of maize grits. J. Food Eng. 8: 247–272.

Kshirsagar, M.P.; Kalamkar, V.R.; Pande, R.R. 2020. Multi-response robust design optimization of natural draft biomass cook stove using response surface methodology and desirability function. Biomass and Bioenergy 135: 105-107.

Leite, T.S.; De Jesus, A.L.T.; Schmiele, M.; et al. 2017. High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. LWT - Food Science and Technology 76: 361-369.

Li, G.; Zhu, F. 2017. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch. Carbohydr Polym 164: 396-402.

Li, G.; Zhu, F. 2018. Quinoa starch: Structure, properties, and applications. Carbohydr Polym 181: 851-861.

Li, H.; Lei, N.; Yan, S.; et al. 2019. Molecular causes for the effect of cooking methods on rice stickiness: A mechanism explanation from the view of starch leaching. International Journal of Biological Macromolecules 128: 49-53.

Lin, S.; Hsieh, F.; Huff, H.E. 1997. Effects of Lipids and Processing Conditions on Degree of Starch Gelatinization of Extruded Dry Pet Food. LWT - Food Science and Technology 30(7): 754-761.

Liu, K.; Liu, Q. 2020. Enzymatic determination of total starch and degree of starch gelatinization in various products. Food Hydrocolloids 103: 105-139.

Liu, Y.; Yu, J.; Copeland, L.; et al. 2019. Gelatinization behavior of starch: Reflecting beyond the endotherm measured by differential scanning calorimetry. Food Chem 284: 53-59.

Liu, Y.; Chen, J.; Luo, S.; et al. 2017. Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydrate Polymers. 175: 265-272.

Majdi, H.; Esfahani, J.A.; Mohebbi, M. 2019. Optimization of convective drying by response surface methodology. Computers and Electronics in Agriculture 156: 574-584.

Mezreb, K.; Goullieux, A.; Ralainirina, R.; et al. 2003. Application of image analysis to measure screw speed influence on physical properties of corn and wheat extrudates. Journal of Food Engineering 57(2): 145-152.

Mota, C.; Nascimento, A.C.; Santos, M.; et al. 2016. The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). Journal of Food Composition and Analysis 49: 57-64.

Mościcki, L.; Mitrus, M.; Wójtowicz, A. 2007. Technika ekstruzji w przemyśle rolno-spożywczym. PWRiL, Warszawa, ISBN 978-83-09-01027-2.

Pardhi, A.; Baljit, B.; Gulzar C.; Dar, D.2016. Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology. Journal of the Saudi Society of Agricultural Sciences JSSAS 249: 1-11

Pandey, A.; Gupta, A.; Sunny, A.; et al. 2020. Multi-objective optimization of media components for improved algae biomass, fatty acid and starch biosynthesis from Scenedesmus sp. ASK22 using desirability function approach. Renewable Energy 150: 476-486.

Pei-Ling, L.; Xiao-Song, H.; Qun, S. 2010. Effect of high hydrostatic pressure on starches: A review. Starch - Stärke 62(12): 615-628.

Pelembe, L.A.M.; Erasmus, C.; Taylor, J.R.N. 2002. Development of a protein-rich composite sorghum cowpea instant porridge by extrusion cooking process. LWT-Food Sci. Technol. 35: 120–127.

Perez-Pacheco, E.; Moo-Huchin, V.M.; Estrada-Leon, R.J.; et al. 2014. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts seeds. Carbohydr Polym 101: 920-927.

Qian, J.; Kuhn, M. 1999. Characterization of Amaranthus cruentus and Chenopodium quinoa Starch. Starch-Stärke 51(4): 116-120.

Ruales, J.; Nair, B.M. 1994. Properties of starch and dietary fibre in raw and processed quinoa (Chenopodium quinoa, Willd.) seeds. Plant Foods for Human Nutrition, 45(3): 223-246.

Tang, H.; Watanabe, K.; Mitsunaga, T. 2002. Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydrate Polymers 49: 13-22.

Valdez-Arana, J.D.C.; Steffolani, M.E.; Repo-Carrasco-Valencia, R.; et al. 2020. Physicochemical and functional properties of isolated starch and their correlation with flour from the Andean Peruvian quinoa varieties. International Journal of Biological Macromolecules 147: 997-1007.

Vilcacundo, R.; Hernández-Ledesma, B. 2017. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science 14: 1-6.

Watanabe, K.; Peng, N.L.; Tang, H.; Mitsunaga, T. 2007. Molecular Structural Characteristics of Quinoa Starch. Food Science and Technology Research 13(1): 73-78.

Xu, J.; Blennow, A.; Li, X.; et al. 2020. Gelatinization dynamics of starch in dependence of its lamellar structure, crystalline polymorphs and amylose content. Carbohydrate Polymers 229: 115-181.

Zhang, Y.; Li, B.; Zhang, Y.; et al. 2019. Effect of degree of polymerization of amylopectin on the gelatinization properties of jackfruit seed starch. Food Chem 289: 152-159.

Zhao, Y.; Li, N.; Li, B.; et al. 2014. Reduced expression of starch branching enzyme IIa and IIb in maize endosperm by RNAi constructs greatly increases the amylose content in kernel with nearly normal morphology. Planta 241(2): 449-461.

Zhu, F.; Liu, P. 2019. Starch gelatinization, retrogradation, and enzyme susceptibility of retrograded starch: Effect of amylopectin internal molecular structure. Food Chem. 316: 126036.

Zhu, L.; Wu, G.; Cheng, L.; et al. 2020. Investigation on molecular and morphology changes of protein and starch in rice kernel during cooking. Food Chem 316: 126-162.

Descargas

Publicado

2020-08-26

Cómo citar

Huamani-H, A., Ponce-Ramírez, J., & Málaga-Juárez, J. (2020). Optimización del proceso de cocción de quinua utilizando el diseño 3k y la función de deseabilidad: Grado de gelatinización, índice de absorción de agua, índice de solubilidad y desprendimiento de cotiledones. Scientia Agropecuaria, 11(3), 381-390. https://doi.org/10.17268/sci.agropecu.2020.03.10

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a