Bioherbicida a partir de extracto fenólico obtenido de residuos de almazaras

Autores/as

  • Juan Guevara Universidad Católica del Maule.
  • Claudia Narváez Universidad Católica del Maule.
  • Aurora Marín Universidad Católica del Maule.
  • Javiera Gutiérrez Universidad Católica del Maule.
  • Constanza Troncoso Universidad Católica del Maule.

DOI:

https://doi.org/10.17268/sci.agropecu.2019.04.06

Palabras clave:

fenol, bioherbicida, alpechín, germinación, fitotoxicidad.

Resumen

El uso de herbicidas sintéticos ha demostrado tener efectos nocivos en el medio ambiente y en la salud humana. Una alternativa al uso de estos compuestos sintéticos es el desarrollo de pesticidas derivados de principios activos, encontrados en plantas o metabolitos secundarios provenientes de microorganismos, que presenten propiedades fitotóxicas, pero de poca o nula toxicidad en mamíferos y utilizables en agricultura orgánica. En este contexto, el presente trabajo analizó la capacidad bioherbicida de un extracto fenólico obtenido de alpechín, que es un residuo líquido de producido en la obtención de aceite de oliva. El efecto fitotóxico fue evaluado a través de pruebas de germinación de semillas de trigo (Triticum aestivum). La efectividad del extracto fenólico fue comparada con un herbicida comercial cuyo principio activo es Simazina. Los resultados muestran que a concentraciones de 100 ppm (equivalentes de ácido gálico) aproximadamente el 10% de las semillas germinan. Las pruebas a concentraciones de 480 y 1050 ppm inhiben todas las etapas de la germinación. A diferencia de las pruebas con el extracto fenólico, el herbicida comercial no detiene la emergencia radicular en las semillas. Sin embargo, ellas aparecen con deformaciones y no logran desarrollarse de manera normal.

Biografía del autor/a

Juan Guevara, Universidad Católica del Maule.

Claudia Narváez, Universidad Católica del Maule.

Aurora Marín, Universidad Católica del Maule.

Javiera Gutiérrez, Universidad Católica del Maule.

Constanza Troncoso, Universidad Católica del Maule.

Citas

Araniti, F.; Sunseri, F.; Abenavoli, M.R. 2014. Phytotoxic activity and phytochemical characterization of Lotus ornithopodioides L., a spontaneous species of Mediterranean area. Phytochemistry Letters 8: 179–183.

Balasundram, N.; Sundram, K.; Samman., S. 2006. Phenolic compounds in plants and agriindustrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99(1): 191–203.

Cavieres, M.F. 2004. Exposición a pesticidas y toxicidad reproductiva y desarrollo en humanos. Análisis de la evidencia epidemiológica y experimental. Rev. Méd. Chile 132(7): 873-879.

Cicco, N.; Lanorte, M.; Paraggio, M.; Viggiano, M.; Lattanzio, V. 2009. A reproducible, rapid and inexpensive Folin–Ciocalteu micromethod in determining phenolics of plant methanol extracts. Microchemical Journal 91(1): 107–110.

Copping, L.; Duke, S. 2007. Natural products that have been used commercially as crop protection agents. Pest. Manag. Sci. 63(6): 524-554.

Diepens, N.J.; Buffan-Dubau, E.; Budzinski, H.; Kallerhoff, J.; Merlina, G.; Silvestre, J.; Auby, I.; Tapie, N.; Elger, A. 2017. Toxicity effects of an environmental realistic herbicide mixture on the seagrass Zostera noltei. Environmental Pollution 222: 393-403.

El-Abbassi, A.; Saadaoui, N.; Kiai, H.; Raiti, J.; Hafidi, A. 2017. Potential applications of olive mil wastewater as biopesticide for crops protection. Sci. Total Environ. 576: 10-21.

Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. 2015. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology 32(1): 147-156.

Gouveia, I.; Lima, C.; de Carvalho, L.; Kaiser, C.; Gibara, A. 2018. Evidence of risks of renal function reduction due to occupational exposure to agrochemicals: A systematic review. Environmental Toxicology and Pharmacology 63: 21-28.

Hasenbein, S.; Peralta, P.; Lawler, S.; Connon, R. 2017. Environmentally relevant concentrations of herbicides impact non-target species at multiple sublethal endpoints. Science of the Total Environment 607–608: 733–743.

Hernandes, F.; de Quadros, N.; Mattos, L.; Escarrone, A.; Primel, G.; Martí, D; da Rosa, C. 2017. Exposure to atrazine alters behaviour and disrupts the dopaminergic system in Drosophila melanogaster. Comparative Biochemistry and Physiology, Part C 202: 94–102.

Isidori, M.; Lavorgna, M.; Nardelli, A.; Parrella A. 2005. Model Study on the Effect of 15 Phenolic Olive Mill Wastewater Constituents on Seed Germination and Vibrio fischeri metabolism. J. Agric. Food Chem. 53(21): 8414−8417.

Jumarie, C.; Aras, P.; Boily, M. 2017. Mixtures of herbicides and metals affect the redox system of honey bees. Chemosphere 168: 163-170.

Kadioglu, I.; Yanar, Y. 2004. Allelopathic Effects of plant extracts against seed germination of some weeds. Asian Journal of Plant Sciences 3(4): 472-475.

Kordali, S.; Cakir, A.; Akcin, T.; Mete, E.; Akcin, A.; Aydin, T.; Kilic., H. 2009. Antifungal and herbicidal properties of essential oils and n-hexane extracts of Achillea gypsicola Hub-Mor. and Achillea biebersteinii Afan. (Asteraceae). Industrial Crops and Products 29(2-3): 562–570.

Lawrance, S.; Varghese, S.; Varghese, E.; Asok, A.; Jisha, M. 2019. Quinoline derivatives producing Pseudomonas aeruginosa H6 as an efficient bioherbicide for weed management. Biocatalysis and Agricultural Biotechnology 18: 101096.

Mantzavinos, D.; Federici, F.; Fava, F.; Kalogerakis, N. 2009. Valorisation of agro-industrial by-products, effluent and waste: concept, opportunities and the case of olive mill wastewaters. J. Chem. Technol. Biotechnol. 84: 895-900.

Martin, J.; Sampedro, I.; García-Romera, I.; García-Garrido, J.M.; Ocampo, J.A.; 2002. Arbuscular mycorrhizal colonization and growth of soybean (Glycine max) and lettuce (Lactuca sativa) and phytotoxic effects of olive mill residues. Soil Biol. Biochem. 34(11): 1769-1775.

Masi, M.; Freda, F.; Sangermano, F.; Calabrò, V.; Cimmino, A.; Cristofaro, M.; Meyer, S.; Evidente, A. 2019. Radicinin, a fungal phytotoxin as a target-specific bioherbicide for invasive buffelgrass (Cenchrus ciliaris) control. Mole-cules 24(6): 1086.

Medina, E.; Romero, C.; de los Santos, B.; de Castro, A.; García, A.; Romero, F.; Brenes, M. 2011. Antimicrobial activity of olive solution from stored alpeorujo against plant phatogenic microorganisms. J. Agric. Food Chem. 59(13): 6927-6932.

Mikó, Z.; Ujszegi, J.; Gál, Z.; Hettyey, A. 2017. Effects of a glyphosate-based herbicide and predation threat on the behaviour of agile frog tadpoles. Ecotoxicology and Environmental Safety 140: 96–102.

Morra, M.; Popova, I.; Boydston, R. 2018. Bioherbicidal activity of Sinapis alba seed meal extracts. Industrial Crops & Products 115: 174–181.

Paraskeva, C.; Papadakis, V.; Kanellopoulou, D.; Koutsoukos, P.; Angelopoulos, K. 2007. Membrane Filtration of Olive Mill Wastewater and Exploitation of Its Fractions. Water Environ. Res. 79(4): 421-429.

Patterson, D.T. 1981. Effects of Allelopathic Chemicals on Growth and Physiological Responses of Soybean (Glycine max). Weed Science 29(1): 53-59.

Reichert, F.; Albertoni, M.; Forte, C.; Pandolfi, L.; Dil, J.; Weirich, S.; Carezia, C.; Mulinari, J.; Mazutti, M.; Fongaro, G.; Galon, L.; Treichel, H.; Mossi, A. 2019. New perspectives for weeds control using autochthonous fungi with selective bioherbicide potential. Heliyon 5: e01676.

Reigosa, M.J.; Souto, X.C.; González, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation 28(2): 83–88.

Reigosa, M.J.; Pazos-Malvido, E. 2007. Phytotoxic Effects of 21 Plant Secondary Metabolites on Arabidopsis thaliana Germination and Root Growth. J Chem Ecol. 33: 1456–1466.

Seiber, J.; Coats, J.; Duke, S.; Gross, A. 2014. Biopesticides: State of the Art and Future Opportunities. J. Agric. Food Chem. 62(48): 11613−11619.

Špoljarić, D.; Štolfa, I.; Horvatić, J.; Žuna, T.; Stević, F.; Žarković, N.; Waeg, G.; Jaganjac, M. 2018. S-metolachlor promotes oxidative stress in green microalga Parachlorella kessleri - A potential environmental and health risk for higher organisms. Science of the Total Environment 637–638: 41–49.

Stanley, J.; Sah, K.; Jain, S.; Bhatt, J.; Sushil, S. 2015. Evaluation of pesticide toxicity at their field recommended doses to honey bees, Apis cerana and A. mellifera through laboratory, semi-field and field studies. Chemosphere 119: 668–674.

Thundiyil, J.; Stober, J.; Besbelli, N.; Pronczuk, J. 2008. Acute pesticide poisoning: a proposed classification tool. Bulletin of the World Health Organization 86(3): 205-209.

Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G. Jr. 2018. Environmental and health effects of the herbicide glyphosate. Science of the Total Environment 616–617: 255–268.

Varona, M.; Castro, R.; Páez, M.; Carvajal, N.; Barbosa, E.; León L.; Díaz, S. 2012. Impacto en la salud y el medio ambiente por exposición a plaguicidas e implementación de buenas prácticas agrícolas en el cultivo de tomate, Colombia, 2011. Rev Chil Salud Pública 16(2): 96 -106.

Yang, C.M.; Lee, C.N.; Zhou, C.H. 2002. Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation. Bot. Bull. Acad. Sin. 43: 299-304.

Yangui, T.; Sayadi, S.; Rhouma A.; Dhouib, A. 2010. Potential use of hydroxytyrosol-rich extract from olive mill wastewater as a biological fungicide against Botrytis cinerea in tomato. J Pest Sci. 83: 437–445.

Yangui, A.; Abderrabba, M. 2018. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity. Food Chemistry 262: 102–109.

Received May 3, 2019.

Accepted October 31, 2019.

Corresponding author: jguevara@ucm.cl (J. Guevara).

Descargas

Publicado

2019-12-26

Cómo citar

Guevara, J., Narváez, C., Marín, A., Gutiérrez, J., & Troncoso, C. (2019). Bioherbicida a partir de extracto fenólico obtenido de residuos de almazaras. Scientia Agropecuaria, 10(4), 497-503. https://doi.org/10.17268/sci.agropecu.2019.04.06

Número

Sección

Artículos originales

Artículos similares

También puede {advancedSearchLink} para este artículo.