HS-SPME-GC-MS detection of volatile compounds in Myrciaria jabuticaba Fruit

Autores/as

  • Gerby Rondán Universidad Nacional de Trujillo
  • Ausberta Cabezas
  • Antonio Oliveira
  • Magaly Brousett-Minaya
  • Narendra Narain

DOI:

https://doi.org/10.17268/sci.agropecu.2018.03.03

Palabras clave:

jabuticaba, Myrciaria, volatile compounds, headspace solid phase microextraction, gas chromatography mass spectrometry.

Resumen

This study was performed to investigate the volatile compounds for the characteristic aroma in jabuticaba fruit distributed in southern and central regions of Brazil. The present work combines headspace solid phase microextraction (HS-SPME) and high resolution gas chromatography-mass spectrometry (GC-MS) techniques to identify and quantify the volatile compounds. The influence of different SPME fibers (CAR/PDMS and DVB/CAR/PDMS) in extraction of volatile compounds was evaluated. The effects of extraction temperature and salt concentration (NaCl) in the extraction medium were studied using the response surface methodology in order to achieve the highest extraction efficiency. The better extraction of volatile compounds was achieved by using a CAR/PDMS fiber and the optimum adsorption conditions were at 42 °C for 30 min and 5% NaCl concentration. A total of 71 compounds were identified, among these, 57% were terpenes which was the most representative class of compounds, followed by esters (19%), aldehydes (10%), alcohols (5.5%) and aromatics compounds (4.4%) and other organic compounds 2.8%. Limonene and ethyl acetate were the volatile compounds that showed highest relative concentration and these could contribute to the characteristic aroma of the jabuticaba fruit along with other compounds such as b-pinene, δ-cadinene, linalool, b-guaiene, and α-caryophyllene.

Citas

Acree, T.; Arn, H. 2004. Gas chromatography - olfactometry (GCO) of natural products Sponsored by DATU Inc. Flavornet retrieved from: http://www.flavornet.org.

Arthur, C.L.; Pawliszyn, J. 1990. Solid phase microextraction with termal desorption using fused sílica optical fibers. Analytical Chemistry 62: 2145-2148.

Boulanger, R.; Crouzet, J. 2001. Identification of the aroma components of acerola (Malphigia glabra L.): free and bound flavor compounds. Food Chemistry 74: 209-216.

Carasek, E.; Pawliszyn, A. 2006. Screening of tropical fruit volatile compounds using Solid-Phase Microextraction (SPME) fibers and internally cooled SPME fiber. Journal Agricultural and Food Chemistry 54: 8688−8696.

Charve, J.; Chen, Ch.; Hegeman, A.D.; Reineccius, G.A. 2011. Evaluation of instrumental methods for the untargeted analysis of chemical stimuli of orange juice flavour. Journal of Flavour and Fragrance 26: 429-440.

Cheng, H.; Chen, J.; Chen, S.; Wu, D.; Liu, D.; Ye, X. 2015. Characterization of aroma-active volatiles in three Chinese bayberry (Myrica rubra) cultivars using GC–MS–olfactometry and an electronic nose combined with principal component analysis. Food Research International 72: 8-15.

Cheong, K.W.; Tan, C.P.; Mirhosseini, H.; Chin, S.T.; Man, Y.B.C.; Hamid, N.S.A. et al. 2011. Optimization of equilibrium headspace analysis of volatile flavor compounds of malaysian soursop (Annona muricata): Comprehensive two-dimen-sional gas chromatography time-of-flight mass spectrometry (GCGC-TOFMS). Food Chemistry 125: 1481-1489.

Christof, B.S.; Tara, G., Reinhold, C. 2014. Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) Volatiles assessed by headspace solid phase microextraction and gas chromatography–mass spectrometry (HS-SPME-GC/MS). Food Chemistry 150: 382-391.

Cuevas, F.J.; Moreno-Rojas, J.M.; Arroyo,F.; Daza, A.; Ruiz-Moreno, M.J. 2016. Effect of management (organic vs conventional) on volatile profiles of six plum cultivars (Prunus salicina Lindl.). A chemometric approach for varietal classification and determination of potential markers. Food Chemistry 199: 479-484.

De Souza, M.P.; Bataglion, G.A.; da Silva, F.M.A.; de Almeida, R. A.; Paz, W.H.P.; Nobre, T.A.; Marinho, J.V.N.; Salvador, M.J.; Fidelis, C.H.V.; Acho, L.D.R.; de Souza, A.D.L.; et al. 2016. Phenolic and aroma compositions of pitomba fruit (Talisia esculenta Radlk.). Food Research International 87: 87-94.

Duarte, R.A.; Santos, S.C.; Seraphin, J.C.; Ferri, P.H. 2010. Environmental influence on phenols and essential oils of Myrciaria cauliflora leaves. Journal of the Brazilian Chemical Society 21(9): 1672-1680.

Érica, A.; Souza, S.; Saboia, G.; Nina, C.J.; Hoffmann, C.; Dos Santos, R.S.I.; Geraldo, L. G. Soares, G.L.; Zini, C.A. 2017. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to. Talanta 175: 9-20.

Ferreira, L.; Perestrelo, R.; Câmara, J.S. 2009. Comparative analysis of the volatile fraction from Annona cherimola Mill. cultivars by solid-phase microextraction and gas chromatography–quadrupole mass spectrometry detection. Talanta 77: 1087-1096.

Franco, M.R.B.; Shibamoto, T. 2000. Volatile composition of some Brazilian fruits: Umbu-cajá (Spondias cytherea), camu-camu (Myrciaria dubia), araçá-boi (Eugenia stipitata), and cupuaçu (Theobroma grandiflorum). Journal of Agricultural and Food Chemistry 48: 1263-1265.

Galvão, S.M.; Narain, N.; dos Santos, P.S.M.; Nunes, M.L. 2011. Volatile compounds and descriptive odor attributes in umbu (Spondias tuberosa) fruits during maturation. Food Research International 44: 1919-1926.

Gioti, M.E.; Fiamegos, C.Y.; Skalkos, C.D.; Atalikas, D.C. 2007. Improved method for the in vitro assessment of antioxidant activity of plant extracts by headspace solid-phase microextraction and gas chromatography–electron capture detection. J. of Chromatography A 1152(1): 150-155.

Huang, B.; Qin, L. Chu, Q.; Zhang, Q.; Gao, L.; Zheng, H. 2009. Comparison of headspace SPME with hydrodistillation and SFE for analysis of the volatile components of the roots of Valeriana officinalis var. latifolia. Chromatographia 69: 489-496.

Ibanez, E.; Lopez-Sebastian, S.; Ramos, E.; Tabera, J. Reglero, G. 1998. Analysis of volatile fruit compo-nents by headspace solid-phase microextraction, Food Chemistry 63: 281-286.

Lasekan, O.; Khatib, A.; Juhari, H.; Patiram, P.; Lasekan, S. 2013. Headspace solid-phase micro-extraction gas chromatography–mass spectrometry determination of volatile compounds in different varieties of African star apple fruit (Chrysophillum albidum). Food Chemistry 141: 2089–2097.

Lasekan, O.; Abbas, K. 2010. Flavour chemistry of palm toddy and palm juice: a review. Trends in Food Science & Technology 21: 494-501.

Leffingwell. 2007. Flavor Base. Leffingwell & Associa-tes. Available in: www.leffingwell.com/flavbase.htm

Liqin, Y.; Chunxiang, Y.; Weidong, L.; Jiangbo, H.; Sun, M.; Jingru, Z.; Zhongshuang, Z. 2017 Evaluation of volatile compounds from Chinese dwarf cherry (Cerasus humilis (Bge.) Sok.) germplasms by headspace solid-phase microextraction and gas chromatography–mass spectrometry. Food Chemistry 217: 389–397.

Liu, F.X.; Fu, S.F.; Bi, X.F.; Chen, F. et al. 2013. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in china. Food Chemistry 138: 396-405.

Márquez, C.J.; Jimenez, A.M.; Osorio, C.; Cartagena, J.R. 2011. Volatile compounds during the ripening of colombian soursop (Annona muricata L. cv. Elita). Vitae, Revista de la Facultad de Química Farmacéutica 18(3):245-250.

Middleton, E.J.R.; Kandaswami, C.; Theoharides, T.C. 2000. The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer. Pharmacological Reviews 52: 673–751.

Mirhosseini, H.; Tan, C.P. 2009. Response surface methodology and multivariate analysis of equilibrium headspace concentration of orange beverage emulsion as function of emulsion composition and structure. Food Chemistry 115: 324–333.

Oliveira, L.A.; Lopes, B.R.; Fernando, A.; Cabral, M.N.; Eberlin. 2006. Volatile compounds from pitanga fruit (Eugenia uniflora L.). Food Chemistry 99: 1–5.

Oliveira, M.A.; Pereira, N.R.; Marsaioli, Jr.A.; Augusto, F. 2004. Studies on the aroma of cupuassu liquor by headspace solid-phase microextraction and gas chromatography. Journal of Chromatography A 1025: 115–124.

Parker, M.; Pollnitz, A.P.; Cozzolino, D.; Leigh-Francis, I.; Herderich, M.J. 2007. Identification and quan-tification of a marker compound for 'pepper' aroma and flavor in shiraz grape berries by combination of chemometrics and gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry 55: 5948-5955.

Pino, J.A. 2012. Odour-active compounds in mango (Mangifera indica L. cv. Corazón). International Journal of Food Science and Technology 47: 1944 – 1950.

Plagemann, I.; Krings, I.; Berger, R.G.; Maróstica, Jr. M.R. 2012. Volatile constituents of jabuticaba (Myrciaria jabuticaba (Vell.) O. Berg) fruits. Journal of Essential Oil Research 24(1): 45–51.

Porat, R.; Tietel, Z.; Zippori, I.; Dag, A. 2011. Aroma volatile compositions of high-and low-aromatic guava varieties. Journal of the Science and Food Agriculture 91: 2794–2798.

Reynertson, K.A.; Wallace, A.M, Adachi, S.; Gil, R.R.; Yang, H.; Basile, M.J. 2006. Bioactive depsides and anthocyanins from jabuticaba (Myrciaria cauliflora). Journal of Natural Products 69: 1228–1230. .

Souza-Silva, É.A.; Gionfriddo, E.; Pawliszyn, J. 2015. A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. TrAC Trends in Analytical Chemistry 71: 236-248.

Vallverdú, Q.A.; Lamuela-Raventós, R.M. 2016. Foodomics: A new tool to differentiate between organic and conventional foods. Electrophoresis. 13:1784-94.

Yang, X.; Peppard, T. 1994. Solid-phase microextraction for flavor analysis. Journal Agricultural of Food Chemistry 42: 1925-1930.

Received December 10, 2017.

Accepted August 13, 2018.

Corresponding author: C16238@utp.edu.pe (G. Rondán).

Descargas

Publicado

2018-10-02

Cómo citar

Rondán, G., Cabezas, A., Oliveira, A., Brousett-Minaya, M., & Narain, N. (2018). HS-SPME-GC-MS detection of volatile compounds in Myrciaria jabuticaba Fruit. Scientia Agropecuaria, 9(3), 319-327. https://doi.org/10.17268/sci.agropecu.2018.03.03

Número

Sección

Artículos originales