Determination of gibberellic acid in a commercial seaweed extract by capillary electrophoresis


  • María Quijano-Avilés Universidad Nacional de Trujillo
  • Wendy Gavica Universidad de Guayaquil, UG, Facultad de Ciencias Químicas (FCQ), Guayaquil, Ecuador.
  • Ana Barragán ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo. Guayaquil, Ecuador.
  • Patricia Manzano ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo. Guayaquil, Ecuador. ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV). Campus Gustavo Galindo, Guayaquil, Ecuador.


Palabras clave:

Algae extract, gibberellin, phytohormone, uv-vis, validation.


Gibberellic acid (GA3) is an important plant growth regulator used in agriculture. This work has developed and validated a simple method for the quantification of GA3 in a seaweed extract product using capillary electrophoresis with direct UV detection. A fused-silica capillary of 50 µm inner diameter and 30 cm of effective length with extended light path, 50 mmol.L-1 of borate buffer as background electrolyte solution (pH 9.11), voltage of +30kV applying hydrodynamic injection of 50 mbar for 5 s and length detection of 200 nm were employed. The method was validated according to the International Conference Harmonisation guidelines. Satisfactory results in the range of 10 – 100 mg.L-1 were obtained for precision (RSD below 3.62%), linearity (R2: 0.9976, lack of fit test p > 0.05), specificity and accuracy for which the limit of detection and quantitation were 3.07 and 9.29 mg.L-1, respectively. The results indicate that the method is suitable for implementation in agroindustry in order to assure the quality control of GA3 of seaweed products.


Araujo, P. 2009. Key aspects of analytical method validation and linearity evaluation. Journal of Chromatography B 877: 2224–2234.

Assunção, N.; Arruda, S.C; Martinelli, A.P.; Carrilho, E. 2009. Direct determination of plant-growth related metabolites by capillary electrophoresis with spectrophotometric UV detection. Journal of the Brazilian Chemical Society 20: 183–187.

Chen, H.; Guo, X.F.; Zhang, H.S.; Wang, H. 2011. Simultaneous determination of phytohormones containing carboxyl in crude extracts of fruit samples based on chemical derivatization by capillary electrophoresis with laser-induced fluorescence detection. Journal of Chromatography B 879: 1802–1808.

Dagar, A.; Weksler, A.; Friedman, H.; Lurie, S. 2012. Gibberellic acid (GA3) application at the end of pit ripening: Effect on ripening and storage of two harvests of “September Snow” peach. Scientia Horticulturae 140: 125–130.

Della-Betta, F.; Vitali, L.; Fett, R.; Costa, A. C. O. 2014. Development and validation of a sub-minute capi-llary zone electrophoresis method for determination of nitrate and nitrite in baby foods. Talanta 122: 23–29.

Ge, L.; Peh, C.Y.C.; Yong, J.W.H.; Tan, S.N.; Hua, L.; Ong, E.S. 2007. Analyses of gibberellins by capillary electrophoresis–mass spectrometry combined with solid-phase extraction. Journal of Chromatography A 1159: 242–249.

Ghosh, A.; Vijay-Anand, K.G.; Seth, A. 2015. Life cycle impact assessment of seaweed based biostimulant production from onshore cultivated Kappaphycus alvarezii (Doty) Doty ex Silva—Is it environmentally sustainable? Algal Research 12: 513–521.

Huang, L.; He, M.; Chen, B.; Hu, B. 2014. Membrane-supported liquid–liquid–liquid microextraction combined with anion-selective exhaustive injection capillary electrophoresis-ultraviolet detection for sensitive analysis of phytohormones. Journal of Chromatography A 1343: 10–17.

Krishna, H.; Das, B.; Attri, B.L.; Kumar, A.; Ahmed, N.; Krishna, H. 2012. Interaction between different pre-and postharvest treatments on shelf life extension of “Oregon Spur” apple. Fruits 67(671): 31–40.

Le, T.H.H.; Nguyen, T.Q.H.; Tran, C.S.; Vu, T.T.; Nguyen, T.L.; Cao, V.H.; Mai, T.D. 2017. Screening deter-mination of food additives using capillary elec-trophoresis coupled with contactless conductivity detection: A case study in Vietnam. Food Control 77: 281–289.

Liu, B.-F.; Zhong, X.-H.; Lu, Y.-T. 2002. Analysis of plant hormones in tobacco flowers by micellar electro-kinetic capillary chromatography coupled with on-line large volume sample stacking. Journal of Chromatography A 945: 257–265.

Nhujak, T.; Srisa-art, M.; Kalampakorn, K.; Tolieng, V.; Petsom, A. 2005. Determination of Gibberellic Acid in Fermentation Broth and Commercial Products by Micellar Electrokinetic Chromatography. Journal of Agricultural and Food Chemistry 53: 1884–1889.

Ozkan, Y.; Ucar, M.; Yildiz, K.; Ozturk, B. 2016. Pre-harvest gibberellic acid (GA 3) treatments play an important role on bioactive compounds and fruit quality of sweet cherry cultivars. Scientia Horti-culturae 211: 358–362.

Sharaf-Eldin, M.A.; Schnitzler, W.H.; Nitz, G.; Razin, A.M.; El-Oksh, I. I. 2007. The effect of gibberellic acid (GA3) on some phenolic substances in globe artichoke (Cynara cardunculus var. scolymus (L.) Fiori). Scientia Horticulturae, 111: 326–329.

Zhu, G.; Long, S.; Sun, H.; Luo, W.; Li, X.; Hao, Z. 2013. Determination of gibberellins in soybean using tertiary amine labeling and capillary electropho-resis coupled with electrochemiluminescence detection. Journal of Chromatography B 941: 62–68.

Received August 10, 2017.

Accepted January 30, 2018.

Corresponding author: (M. Quijano-Avilés).




Cómo citar

Quijano-Avilés, M., Gavica, W., Barragán, A., & Manzano, P. (2018). Determination of gibberellic acid in a commercial seaweed extract by capillary electrophoresis. Scientia Agropecuaria, 9(1), 157-160.



Comunicación Corta

Artículos similares

También puede {advancedSearchLink} para este artículo.