Effective method for simultaneous determination of abscisic acid, 3-indolacetic acid and gibberellic acid in commercial plant biostimulants by capillary electrophoresis with diode array detection

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2024.014

Palabras clave:

abscisic acid, auxin, gibberellin, plant growth regulator, validation

Resumen

Phytohormones, also known as plant hormones, are naturally occurring chemical compounds that regulate various physiological processes in plants. In this work, a capillary electrophoretic coupled to a diode array detector (CE-DAD) method was developed and validated for the simultaneous quantification of abscisic acid (ABA), 3-indolacetic acid (IAA), and gibberellic acid (GA3) in commercial plant biostimulants. Sample preparation was carried out by liquid-liquid extraction using ethyl acetate. CE separation was performed in a fused-silica capillary and background electrolyte (BGE) consisting of borate buffer (50 mM, pH 9.3) applying a high voltage of 20 kV, a pressure of 50 mbar, and injection time of 35 s. The ABA, IAA, and GA3 were detected at 254, 220 and 195 nm respectively. The CE-DAD method validation results showed acceptable specificity, linearity, accuracy, and precision in the concentration range of 10-100 µg/mL for all compounds according to the (International Conference Harmonisation) ICH guidelines. The proposed method was satisfactory applied to the analysis of cited plant hormones in biostimulants and suggest that sample preparation is a reliable step for extraction of phytohormones containing carboxyl groups. Therefore, the developed and validated method could be implemented as a low-cost and fast analytical tool for quality control purposes.

Citas

Assunção, N. A., Arruda, S. C. C., Martinelli, A. P., & Carrilho, E. (2009). Direct determination of plant-growth related metabolites by capillary electrophoresis with spectrophotometric UV detection. Journal of the Brazilian Chemical Society, 20(1), 183-187. https://doi.org/10.1590/S0103-50532009000100027

Barbosa, L. B., da Silva, T. I., Dias, M. G., Pereira, E. D., Cruz, R. R. P., Silva, J. de S., da Costa, F. B., & Grossi, J. A. S. (2024). Application of phytohormones reduces damage caused by salt stress in Tropaeolum majus. South African Journal of Botany, 166, 69-78. https://doi.org/10.1016/J.SAJB.2024.01.022

Bashir, M. A., Rehim, A., Raza, Q.-U.-A., Raza, H. M. A., Zhai, L., et al. (2021). Biostimulants as Plant Growth Stimulators in Modernized Agriculture and Environmental Sustainability. In F. Ahmad & M. Sultan (Eds.), Technology in Agriculture (p. 311). IntechOpen. https://doi.org/10.5772/INTECHOPEN.98295

Ben Mrid, R., Benmrid, B., Hafsa, J., Boukcim, H., Sobeh, M., & Yasri, A. (2021). Secondary metabolites as biostimulant and bioprotectant agents: A review. Science of The Total Environment, 777, 146204. https://doi.org/10.1016/J.SCITOTENV.2021.146204

Bruce, P., Minkkinen, P., & Riekkola, M. L. (1998). Practical Method Validation: Validation Sufficient for an Analysis Method. Mikrochimica Acta, 128(1), 93-106. https://doi.org/10.1007/BF01242196

Camara, M. C., Vandenberghe, L. P. S., Rodrigues, C., de Oliveira, J., Faulds, C., Bertrand, E., & Soccol, C. R. (2018). Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta, 248(5), 1049-1062. https://doi.org/10.1007/S00425-018-2959-X

Carić, D., Tomišić, V., Kveder, M., Galić, N., Pifat, G., Magnus, V., & Šoškić, M. (2004). Absorption and fluorescence spectra of ring-substituted indole-3-acetic acids. Biophysical Chemistry, 111(3), 247-257. https://doi.org/10.1016/J.BPC.2004.06.006

Chen, Y., Wu, X., Li, Y., Yang, Y., Yang, D., Yin, S., Liu, L., & Sun, C. (2018). Simultaneous Determination of Seven Plant Growth Regulators in Melons and Fruits by Modified QuEChERS Coupled with Capillary Electrophoresis. Food Analytical Methods, 11(10), 2788-2798. https://doi.org/10.1007/S12161-018-1266-2/FIGURES/7

Chóez, I., Manzano Santana, P., & Peralta, E. (2014). Quantification of trans-zeatin in corn wastes and liquid organic fertilizers by HPLC chromatography. Emirates Journal of Food and Agriculture, 26(9), 813-817. https://doi.org/10.9755/ejfa.v26i9.18455

Della Betta, F., Vitali, L., Fett, R., & Oliveira Costa, A. C. (2014). Development and validation of a sub-minute capillary zone electrophoresis method for determination of nitrate and nitrite in baby foods. Talanta, 122, 23-29. https://doi.org/10.1016/J.TALANTA.2014.01.006

Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy, 9(6), 335. https://doi.org/10.3390/agronomy9060335

du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021

EL Sabagh, A., Islam, M. S., Hossain, A., Iqbal, M. A., Mubeen, M., et al (2022). Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Frontiers in Agronomy, 4, 1-16. https://doi.org/10.3389/fagro.2022.765068

Franzoni, G., Cocetta, G., Prinsi, B., Ferrante, A., & Espen, L. (2022). Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulturae, 8(3), 189.

Górka, B., & Wieczorek, P. P. (2017). Simultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDA. Journal of Chromatography B, 1057, 32-39. https://doi.org/10.1016/J.JCHROMB.2017.04.048

Guillén, P. O., Motti, P., Mangelinckx, S., De Clerck, O., Bossier, P., & Van Den Hende, S. (2022). Valorization of the chemical diversity of the tropical red seaweeds Acanthophora and Kappaphycus and their applications in aquaculture: A review. Frontiers in Marine Science, 9, 957290. https://doi.org/10.3389/FMARS.2022.957290

Gupta, S., Devi, L. L., & Singh, A. P. (2024). Plant growth coordination during stress conditions: Role of phytohormones. In M. Abass Ahanger, J. Akthar Bhat, P. Ahmad, & R. John (Eds.), Improving Stress Resilience in Plants: Physiological and Biochemical Basis and Utilization in Breeding (pp. 249-275). Academic Press. https://doi.org/10.1016/B978-0-443-18927-2.00009-1

Huang, L., He, M., Chen, B., & Hu, B. (2014). Membrane-supported liquid-liquid-liquid microextraction combined with anion-selective exhaustive injection capillary electrophoresis-ultraviolet detection for sensitive analysis of phytohormones. Journal of Chromatography A, 1343, 10-17. https://doi.org/10.1016/j.chroma.2014.03.053

Kim, S. G., Hong, I. P., Woo, S. O., Jang, H. R., Pak, S. C., & Han, S. M. (2017). Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter pylori Activity. Pharmacognosy Magazine, 13(Suppl 2), s173. https://doi.org/10.4103/0973-1296.210166

Kwon, C.-T., & Paek, N.-C. (2016). Gibberellic Acid: A Key Phytohormone for Spikelet Fertility in Rice Grain Production. International Journal of Molecular Sciences, 17(5), 794. https://doi.org/10.3390/IJMS17050794

Lema, E., Chóez-Guaranda, I., Ruíz-Barzola, O., Jaramillo, L. I., Pacheco Flores de Valgaz, Á., Van Den Hende, S., & Manzano Santana, P. (2023). Study of the variability in time and space of the antioxidant activity and biochemical composition of Kappaphycus alvarezii at different stocking densities. Bionatura, 8(1), 1-11. https://doi.org/10.21931/RB/2023.08.01.13

Liu, X., Ma, L., Lin, Y. W., & Lu, Y. T. (2003). Determination of abscisic acid by capillary electrophoresis with laser-induced fluorescence detection. Journal of Chromatography A, 1021(1-2), 209-213. https://doi.org/10.1016/J.CHROMA.2003.09.004

Maher, H. M., Abdelrahman, A. E., Alzoman, N. Z., & Aljohar, H. I. (2019). Stability-indicating capillary electrophoresis method for the simultaneous determination of metformin hydrochloride, saxagliptin hydrochloride, and dapagliflozin in pharmaceutical tablets. Journal of Liquid Chromatography & Related Technologies, 42(5-6), 161-171. https://doi.org/10.1080/10826076.2019.1590208

Masár, M., Hradski, J., Schmid, M. G., & Szucs, R. (2020). Advantages and Pitfalls of Capillary Electrophoresis of Pharmaceutical Compounds and Their Enantiomers in Complex Samples: Comparison of Hydrodynamically Opened and Closed Systems. International Journal of Molecular Sciences, 21(18), 1-14. https://doi.org/10.3390/IJMS21186852

Nakurte, I., Keisa, A., & Rostoks, N. (2012). Development and Validation of a Reversed-Phase Liquid Chromatography Method for the Simultaneous Determination of Indole-3-Acetic Acid, Indole-3-Pyruvic Acid, and Abscisic Acid in Barley (Hordeum vulgare L.). Journal of Analytical Methods in Chemistry, 2012(1), 103575. https://doi.org/10.1155/2012/103575

Nhujak, T., Srisa-Art, M., Kalampakorn, K., Tolieng, V., & Petsom, A. (2005). Determination of gibberellic acid in fermentation broth and commercial products by micellar electrokinetic chromatography. Journal of Agricultural and Food Chemistry, 53(6), 1884-1889. https://doi.org/10.1021/jf0484733

Pan, J., Hu, Y., Wang, H., Guo, Q., Chen, Y., Howe, G. A., & Yu, D. (2020). Molecular Mechanism Underlying the Synergetic Effect of Jasmonate on Abscisic Acid Signaling during Seed Germination in Arabidopsis. The Plant Cell, 32(12), 3846-3865. https://doi.org/10.1105/TPC.19.00838

Prasad, K., Das, A. K., Oza, M. D., Brahmbhatt, H., Siddhanta, A. K., Meena, R., Eswaran, K., Rajyaguru, M. R., & Ghosh, P. K. (2010). Detection and quantification of some plant growth regulators in a seaweed-based foliar spray employing a mass spectrometric technique sans chromatographic separation. Journal of Agricultural and Food Chemistry, 58(8), 4594-4601. https://doi.org/10.1021/jf904500e

Quijano-Avilés, M., Gavica, W., Barragán, A., & Manzano, P. (2018). Determination of gibberellic acid in a commercial seaweed extract by capillary electrophoresis. Scientia Agropecuaria, 9(1), 157-160. https://doi.org/10.17268/SCI.AGROPECU.2018.01.17

Rivera, J. D., Correa, Y. M., & Penagos, J. P. (2017). Comparison of different extraction methods for giberelic acid obtention from corn (Zea mays L.) germinated seeds. Revista Colombiana de Quimica, 46(2), 45-50. https://doi.org/10.15446/REV.COLOMB.QUIM.V46N2.63015

Rivera, J. D., Ocampo-Serna, D. M., Martínez-Rubio, R. A., & Correa-Navarro, Y. M. (2022). Determination of gibberellic acid and abscisic acid in (Zea mays L.) (ICA-V305) seeds germinated using dynamic sonication assisted solvent extraction and maceration. MethodsX, 9, 101821. https://doi.org/10.1016/J.MEX.2022.101821

Rivera, J. D., Torres, J., & Correa-Navarro, Y. M. (2020). Validating a High-performance Liquid Chromatography method for the quantification of gibberellic acid in germinating maize seeds. Universitas Scientiarum, 25(1), 95-111. https://doi.org/10.11144/Javeriana.SC25-1.vahp

Shahzad, F., Livingston, T., & Vashisth, T. (2024). Gibberellic acid mitigates Huanglongbing symptoms by reducing osmotic and oxidative stress in sweet orange. Scientia Horticulturae, 329, 112976. https://doi.org/10.1016/J.SCIENTA.2024.112976

Spagnuolo, D., Russo, V., Manghisi, A., Di Martino, A., Morabito, M., Genovese, G., & Trifilò, P. (2022). Screening on the Presence of Plant Growth Regulators in High Biomass Forming Seaweeds from the Ionian Sea (Mediterranean Sea). Sustainability (Switzerland), 14(7), 3914. https://doi.org/10.3390/su14073914

Tan, S. N., Wan, J., Yong, H., & Ge, L. (2014). Analyses of Phytohormones in Coconut (Cocos Nucifera L.) Water Using Capillary Electrophoresis-Tandem Mass Spectrometry. Chromatography, 1(4), 211-226. https://doi.org/10.3390/chromatography1040211

Tarkowská, D., Novák, O., Floková, K., Tarkowski, P., Turečková, V., Grúz, J., Rolčík, J., & Strnad, M. (2014). Quo vadis plant hormone analysis? Planta, 240, 55-76. https://doi.org/10.1007/S00425-014-2063-9/FIGURES/7

Wu, Y., & Hu, B. (2009). Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography. Journal of Chromatography A, 1216(45), 7657-7663. https://doi.org/10.1016/j.chroma.2009.09.008

Yang, L., Chen, Y., Zhao, S., Zhang, W., Du, H., Deng, Z., & Zhang, S. (2016). Simultaneous Determination of Indole-3-Acetic Acid and Indole-3-Butyric Acid in Plant by Field-Amplified Sample Stacking Open-Tubular Capillary Electrochromatography Based on Solid-Phase Extraction with Calixarene Sorbent. Chromatographia, 79(3-4), 243-254. https://doi.org/10.1007/s10337-015-2999-3

Yang, L., Jon, C. S., Wang, L., Zou, Y., Liu, L., et al. (2022). Analysis of multiple-phytohormones during fruit development in strawberry by using miniaturized dispersive solid-phase extraction based on ionic liquid-functionalized carbon fibers. Journal of Food Composition and Analysis, 106, 104262. https://doi.org/10.1016/J.JFCA.2021.104262

Descargas

Publicado

2024-04-08

Cómo citar

Chóez-Guaranda, I. ., Rendon, M. ., Peralta, S. ., Villegas, A. ., & Manzano, P. . (2024). Effective method for simultaneous determination of abscisic acid, 3-indolacetic acid and gibberellic acid in commercial plant biostimulants by capillary electrophoresis with diode array detection. Scientia Agropecuaria, 15(2), 191-199. https://doi.org/10.17268/sci.agropecu.2024.014

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a