EVALUACIÓN DEL CARBÓN ACTIVADO DE Ulva lactuca IMPREGNADO CON Fe3+/Cu2+ EN LA ADSORCIÓN DE CIANURO DE SODIO

Authors

  • Victor Manuel Castro Malabrigo Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n –Ciudad Universitaria, Trujillo, Perú. https://orcid.org/0009-0005-0516-2185
  • Gladys Torres Moreno Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n –Ciudad Universitaria, Trujillo, Perú. https://orcid.org/0009-0000-1928-2296

Keywords:

cianuro, Ulva lactuca, carbón activado impregnado Fe 3/Cu 2

Abstract

El cianuro en cuerpos de agua representa un grave problema ambiental y de salud. Ulva lactuca se ha empleado para remover diversas sustancias tóxicas de aguas residuales industriales. Este estudio evaluó la eficacia del carbón activado de Ulva lactuca impregnado con Fe³⁺/Cu²⁺ (CAUL) en la eliminación de cianuro. Los datos de adsorción se ajustaron a los modelos de Langmuir y Freundlich, siendo este último el que mostró el mejor ajuste (r = 0,9978). La eficiencia de adsorción se analizó a temperatura ambiental (20 ± 2 °C), pH 11, 500 rpm y 30 minutos de contacto. Los resultados indicaron una capacidad máxima de adsorción (qmax) de 48,2 mg de cianuro por gramo de CAUL. Con 0,1 g de CAUL fue posible eliminar el 99,45 % de una solución de 100 mg/L de cianuro. Estos hallazgos sugieren que el CAUL es una alternativa eficaz y sostenible para el tratamiento de aguas residuales contaminadas con cianuro.

DOI: http://dx.doi.org/10.17268/rebiol.2024.44.01.08

References

Abbas, M. N., Al-Hermizy, S. M. M., Abudi, Z. N., & Ibrahim, T. A. (2019). Phenol biosorption from polluted aqueous solutions by Ulva lactuca alga using batch mode unit. Journal of Ecological Engineering, 20(6), 225–235. https://doi.org/10.12911/22998993/109460

Adams, M. D. (1994). Removal of cyanide from solution using activated carbon. Minerals Engineering, 7, 1165–1177. https://doi.org/10.1016/0892-6875(94)90004-3

Adhoum, N., & Monser, L. (2002). Removal of cyanide from aqueous solution using impregnated activated carbon. Chemical Engineering and Processing: Process Intensification, 41(1), 17–21. https://doi.org/10.1016/S0255-2701(00)00156-2

Agarwal, B., & Balomajumder, C. (2015). Removal of phenol and cyanide in multi-substrate system using copper impregnated activated carbon (Cu-GAC). Environmental Progress & Sustainable Energy, 34(6), 1714–1723. https://doi.org/10.1002/ep.12177

Alghamdi, A. A., Al-Odayni, A.-B., Saeed, W. S., Al-Kahtani, A., Alharthi, F. A., & Aouak, T. (2019). Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials, 12(12). https://doi.org/10.3390/ma12122020

Alkhabbas, M., Al-Ma'abreh, A. M., Edris, G., Saleh, T., & Alhmood, H. (2023). Adsorption of anionic and cationic dyes on activated carbon prepared from oak cupules: Kinetics and thermodynamics studies. International Journal of Environmental Research and Public Health, 20(4), 3280. https://doi.org/10.3390/ijerph20043280

Ameen, M. M., Moustafa, A. A., Mofeed, J., Hasnaoui, M., Olanrewaju, O. S., Lazzaro, U., & Guerriero, G. (2021). Factors affecting efficiency of biosorption of Fe (III) and Zn (II) by Ulva lactuca and Corallina officinalis and their activated carbons. Water, 13(23), 3421. https://doi.org/10.3390/w13233421

American Public Health Association. (2023). Standard methods for the examination of water and wastewater (24th ed.). APHA, AWWA, WEF.

Aouay, F., Attia, A., Dammak, L., Ben Amar, R., & Deratani, A. (2024). Activated carbon prepared from waste coffee grounds: Characterization and adsorption properties of dyes. Materials, 17, 3078. https://doi.org/10.3390/ma17133078

Areco, M. M., Hanela, S., Duran, J., & dos Santos Afonso, M. (2012). Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. Journal of Hazardous Materials, 213–214, 123–132. https://doi.org/10.1016/j.jhazmat.2012.01.073

Behnamfard, A., & Salarirad, M. M. (2009). Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. Journal of Hazardous Materials, 170, 127–133. https://doi.org/10.1016/j.jhazmat.2009.04.124

Botz, M., Mudder, T., & Akcil, A. (2016). Cyanide treatment: Physical, chemical, and biological processes. In M. Adams (Ed.), Gold ore processing (pp. 619–645). Elsevier. https://doi.org/10.1016/B978-0-444-63658-4.00035-9

Budhiary, K. N. S., & Sumantri, I. (2021). Langmuir and Freundlich isotherm adsorption using activated charcoal from banana peel to reduce total suspended solid (TSS) levels in tofu industry liquid waste. Materials Science and Engineering, 1053, 012113. https://doi.org/10.1088/1757-899X/1053/1/012113

Cayo-Domínguez, R., Montalvo-Achic-Huamán, C., & Pampa-Quispe, N. B. (2023). Cinética e isotermas de adsorción del arsénico (III) en solución acuosa mediante carbón activado con estructura nanoporosa obtenido de lodos orgánicos de aguas residuales. Tecnología y Ciencias del Agua, 14(6), 1–39. https://doi.org/10.24850/j-tyca-14-06-01

Dash, R. R., Balomajumder, C., & Kumar, A. (2009). Removal of cyanide from water and wastewater using granular activated carbon. Chemical Engineering Journal, 146, 408–413. https://doi.org/10.1016/j.cej.2008.06.021

Depci, T. (2012). Comparison of activated carbon and iron impregnated activated carbon derived from Gölbaşı lignite to remove cyanide from water. Chemical Engineering Journal, 181–182, 467–478. https://doi.org/10.1016/j.cej.2011.12.003

Dirección General de Salud Ambiental. (2011). Reglamento de la calidad de agua para consumo humano - D.S. N.° 031-2010-SA. Ministerio de Salud (MINSA).

Dwivedi, N., Balomajumder, C., & Mondal, P. (2016). Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents. Water Resources and Industry, 15, 28–40. https://doi.org/10.1016/j.wri.2016.06.002

Eke-emezie, N., Etuk, B. R., Akpan, O. P., & Chinweoke, O. C. (2022). Cyanide removal from cassava wastewater onto H3PO4 activated periwinkle shell carbon. Applied Water Science, 12, 157. https://doi.org/10.1007/s13201-022-01679-3

Eskandari, P., Farhadian, M., Solaimany Nazar, A. R., & Goshadrou, A. (2021). Cyanide adsorption on activated carbon impregnated with ZnO, Fe₂O₃, TiO₂ nanometal oxides: A comparative study. International Journal of Environmental Science and Technology, 18, 297–316. https://doi.org/10.1007/s13762-020-02791-0

Fahmi, A. G., Abidin, A., Kusmana, C., & Noor, E. (2022). Versatile synthesis of activated carbon from coconut shells: A method for cyanide adsorption in artisanal and small-scale gold mining wastewater. Journal of Degraded and Mining Lands Management, 9(4), 3685–3693. https://doi.org/10.15243/jdmlm.2022.094.3685

Gebresemati, M., Gabbiye, N., & Sahu, O. (2017). Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. Journal of Applied Research and Technology, 15, 27–35. https://doi.org/10.1016/j.jart.2016.11.002

Halet, F., Chergui, S., Hamdache, F., Boutrif, A., Chergui, A., Ould-Dris, A., Boudriche, L., Guénin, E., Nadjemi, B., & Yeddou, A. R. (2024). Cyanide removal from aqueous solution by oxidation with hydrogen peroxide in the presence of activated alumina-supported copper catalyst. Global NEST Journal, 26(2), 05639. https://doi.org/10.30955/gnj.005639

Hameed, B. H., & El-Khaiary, M. I. (2008). Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: Broad bean peels. Journal of Hazardous Materials, 154(1–3), 639–648. https://doi.org/10.1016/j.jhazmat.2007.10.081

Jauto, A. H., Memon, S. A., Channa, A., & Khoja, A. H. (2019). Efficient removal of cyanide from industrial effluent using acid treated modified surface activated carbon. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(22), 2715–2724. https://doi.org/10.1080/15567036.2019.1568643

Karim, A. B., Mounir, B., Hachkar, M., Bakasse, M., Rais, Z., & Yaacoubi, A. (2017). Dynamic adsorption of BR46 dye and raw textile effluent on Moroccan clay to solve the drought problem. Journal of Water Science & Environmental Technologies, 2(1), 164–172. https://revues.imist.ma/index.php/JOWSET/article/view/8597/5336

Kuyucak, N., & Akcil, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes. Minerals Engineering, 50–51, 13–29. https://doi.org/10.1016/j.mineng.2013.05.027

M’sakni, N. H., & Alsufyani, T. (2021). Removal of cationic organic dye from aqueous solution by chemical and pyrolysis activated Ulva lactuca. Water, 13, 1154. https://doi.org/10.3390/w13091154

Ministerio del Ambiente. (2017). Estándares nacionales de calidad ambiental para agua - D.S. N.º 004-2017-MINAM. Lima, Perú: MINAM.

Mishra, S., Sahoo, N. K., Sahoo, P. K., Sahoo, S., Nayaka, L., & Rout, P. R. (2024). Construction of a novel ternary synergistic CuFe₂O₄–SnO₂-rGO heterojunction for efficient removal of cyanide from contaminated water. RSC Advances, 14, 13850–13861. https://doi.org/10.1039/d4ra02217c

Mofeed, J. (2017). Biosorption of heavy metals from aqueous industrial effluent by non-living biomass of two marine green algae Ulva lactuca and Dunaliella salina as biosorbents. CATRINA, 16(1), 43–52. https://doi.org/10.21608/cat.2017.14267

Morán, D. O. (2016). Modificación química de carbones activados con ácidos minerales [Tesis doctoral, Universidad de Extremadura]. https://dehesa.unex.es/bitstream/10662/3998/1/TDUEX_2016_Omenat_Moran.pdf

Penedo-Medina, D. M., Manals-Cutiño, M. E. M., Vendrell-Calzadilla, M. F., & Salas-Tort, M. D. (2015). Nickel and cobalt adsorption on activated coal of coconut shell. Chemical Technology, 35(1), 73–91. https://doi.org/10.1590/2224-6185.2015.1.%25x

Pratiwi, D., Prasetyo, D. J., & Poeloengasih, C. D. (2018). Adsorption of methylene blue dye using marine algae Ulva lactuca. IOP Conference Series: Earth and Environmental Science, 251, 012012. https://doi.org/10.1088/1755-1315/251/1/012012

Salima, A., Benaouda, B., Noureddine, B., & Duclaux, L. (2013). Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water Research, 47(10), 3375–3388. https://doi.org/10.1016/j.watres.2013.03.038

Sangavi, G., Bakshi, A., Mathangi, G., & Nandhini Devi, G. (2020). Adsorption of reactive dyes from aqueous solution using activated carbon prepared from plantain leaf sheath waste. Chemical and Biochemical Engineering Quarterly, 34(3), 169–180.

Sassi, S., Rais, S., & Sassi, M. (2020). Biosorption of Pb(II) from aqueous solution using green alga (Ulva lactuca) biomass. Journal of Multidisciplinary Engineering Science Studies (JMESS), 6(12).

Shoaib, A. G. M., Huu-Tap, V., Dinh-Trinh, T., El Sikaily, A., Hassaan, M. A., & El Nemr, A. (2024). Green algae Ulva lactuca-derived biochar-sulfur improves the adsorption of methylene blue from water. Scientific Reports, 14, 11583. https://doi.org/10.1038/s41598-024-61868-9

Suresh Jeyakumar, R. P., & Chandrasekaran, V. (2013). Comparative studies on the removal of copper (II) by Ulva fasciata activated carbon and commercially activated carbon. Polish Journal of Chemical Technology, 4(4), 88–94. https://doi.org/10.2478/v10026-012-0108-z

Turp, S. M., Turp, G. A., Ekinci, N., Ozdemir, S., & Yetilmezsoy, K. (2022). Improved methylene blue biosorption onto green algae: Ulva lactuca. Fresenius Environmental Bulletin, 31(1), 998–1009. https://www.researchgate.net/publication/357825503

Uppal, H., Tripathy, S., Chawla, S., Sharma, B., Dalai, M., Singh, S., & Singh, N. (2016). Study of cyanide removal from contaminated water using zinc peroxide nanomaterial. Journal of Environmental Sciences, 49, 1–8. https://doi.org/10.1016/j.jes.2016.07.011

United States Environmental Protection Agency (USEPA). (1992). National primary drinking water regulations; synthetic organic chemicals and inorganic chemicals; final rule. Federal Register, 57(138), 31776.

Published

2025-08-07

How to Cite

Castro Malabrigo, V. M., & Torres Moreno, G. (2025). EVALUACIÓN DEL CARBÓN ACTIVADO DE Ulva lactuca IMPREGNADO CON Fe3+/Cu2+ EN LA ADSORCIÓN DE CIANURO DE SODIO. REBIOL, 44(1), 78 - 88. Retrieved from https://revistas.unitru.edu.pe/index.php/facccbiol/article/view/6688