Contenido de grasa total y compuestos bioactivos de diferentes genotipos de ajo (Allium sativum L.), cultivados en República Dominicana

Autores/as

DOI:

https://doi.org/10.17268/agroind.sci.2025.02.09

Palabras clave:

Allium sativum L., Genotipos, Grasa Total, Capacidad Antioxidante, Compuestos Bioactivos

Resumen

El ajo es una especie vegetal muy consumida alrededor del mundo. En República Dominicana existe alta diversidad genética en las variedades de ajo blanco y morado cultivadas en Constanza, La Vega, habiendo sido cultivados más de veinte genotipos; sin embargo, algunos han desaparecido o su producción ha sido descontinuada debido a poca adaptabilidad, productividad o conveniencia, principalmente por la ausencia de caracterización a nivel químico. En esta investigación se analizó el contenido de grasa total y compuestos bioactivos de los genotipos que prevalecen y se cultivan: Taiwán 1, Taiwán 2, Taiwán 3, Taiwán 3A, Taiwán 05, Morado cubano, Morado cubano #3, Morado Rosello, Morado Rosello #1, Morado Niño, IDIAF 1, IDIAF SEA 14 y Ramón Collado. Se empleó un diseño completamente al azar y se aplicó un ANOVA y la prueba de Tukey al 95% de confianza. Los resultados fueron: grasa total (0,08 a 0,38 % base seca), alicina (167,92 a 2.335,55 mg/Kg), actividad antioxidante (23,83 a 98,83 μmolTE/100g), contenido fenólico total (89,70 a 136,85 mgGAE/100g), taninos (293,33 a 535,76 mg TAE/Kg) y flavonoides (23,78 a 61,62 μgEqRutin/g). La grasa total y los compuestos bioactivos fluctúan entre los genotipos, remarcando la diferencia en la composición química según su variación genética.

Citas

Andarwulan, N., Fardiaz, D., Wattimena, G. A., & Shetty, K. (1999). Antioxidant Activity Associated with Lipid and Phenolic Mobilization during Seed Germination of Pangium edule Reinw. Journal of Agricultural and Food Chemistry, 47(8), 3158–3163. doi:10.1021/jf981287a

Atif, M. J., Amin, B., Ghani, M. I., Ali, M., & Cheng, Z. (2020). Variation in morphological and quality parameters in garlic (Allium sativum L.) bulb influenced by different photoperiod, temperature, sowing and harvesting time. Plants, 9(2). https://doi.org/10.3390/plants9020155

Avgeri, I., Zeliou, K., Petropoulos, S. A., Bebeli, P. J., Papasotiropoulos, V., & Lamari, F. N. (2020). Variability in bulb organosulfur compounds, sugars, phenolics, and pyruvate among greek garlic genotypes: Association with antioxidant properties. Antioxidants, 9(10), 1–14. https://doi.org/10.3390/antiox9100967

Azizah, Z., Sarina, G., & Putri, W. Y. (2022). Antioxidant Activity of the Ethyl Acetate Fraction, N- Hexane Fraction from the Ethanol Extract of Black Garlic (Allium Sativum L.) using the 2,2- Diphenyl 1-Picrylhydrazyl (DPPH). International Journal of Research Publication and Reviews, 3(12), 742–748. https://doi.org/10.55248/gengpi.2022.31217

Barboza, M., Pérez, M., Dhall, R., & Cavagnaro, P. (2022). Genotypic and environmental effects on the compounds associated with garlic flavor, health‐enhancing properties, and postharvest conservation. Crop Science, 62(5), 1807-1820. https://doi.org/10.1002/csc2.20780

Bustos-Hipólito, E., Legorreta-Siañez, A. V., Luisa, A., Garfias, J., González-González, L. R., & Arenas-Huertero, F. J. (2012). Efecto de la extracción de los compuestos antioxidantes de la cáscara de manzana con solventes, sobre la bioactividad y su capacidad antioxidante. Revista Facultad de Ciencia y Tecnología, 11, 123–130.

Cavagnaro, P. F., & Burba, J. L. (2022). Genetic and environmental factors influencing garlic anthocyanin pigmentation: a review. Horticultura Argentina, 41(106), 103–123.

Čeryová, N., Čičová, I., Lidiková, J., Šnirc, M., Horváthová, J., Lichtnerová, H., & Franková, H. (2021). The Content of Bioactive Compounds and Antioxidant Activity of Garlic (Allium sativum L.). Potravinarstvo Slovak Journal of Food Sciences, 15, 1104–1111. https://doi.org/10.5219/1694

Čeryová, N., Lidiková, J., Pintér, E., Šnirc, M., Franková, H., Ňorbová, M., & Fedorková, S. (2023). Total polyphenol content, total flavonoid content, and antioxidant activity of garlic (Allium sativum L.) cultivars. Journal of microbiology, biotechnology and food sciences, 13(1), e9668-e9668.

Dinu, M., Soare, R., Băbeanu, C., & Botu, M. (2023). Evaluation of Productivity Components and Antioxidant Activity of Different Types of Garlic Depending on the Morphological Organs. Horticulturae, 9(9). https://doi.org/10.3390/horticulturae9091039

Galgaye, G. G. (2023). Effect of garlic genotypes (Allium sativum L.) on phenotype, growth, yield-related attributes, and nutritional quality at Bule Hora agro-ecology. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16317

Gao, X., Zhou, Y., Gu, J., Liu, X., & Zhang, Z. (2023). Construction and Activity Study of a Natural Antibacterial Patch Based on Natural Active Substance-Green Porous Structures. Molecules, 28(3). https://doi.org/10.3390/molecules28031319

Gimeno, E. (2004). Compuestos fenólicos. Un análisis de sus beneficios para la salud. OFFARM, 23, 80–84.

Gong, H., Wang, T., Hua, Y., Wang, W. D., Shi, C., Xu, H. X., … Yu, N. N. (2022). Garlic varieties and drying methods affected the physical properties, bioactive compounds and antioxidant capacity of dried garlic powder. CYTA - Journal of Food, 20(1), 111–119. https://doi.org/10.1080/19476337.2022.2093400

Habuš Jerčić, I., Bošnjak Mihovilović, A., Matković Stanković, A., Lazarević, B., Goreta Ban, S., Ban, D., … Kereša, S. (2023). Garlic Ecotypes Utilise Different Morphological, Physiological and Biochemical Mechanisms to Cope with Drought Stress. Plants, 12(9). https://doi.org/10.3390/plants12091824

Han, J., Lawson, L., Han, G., & Han, P. (1995). Spectrophotometric Method for Quantitative Determination of Allicin and Total Garlic Thiosulfinates. Analytical Biochemistry, 225(1), 157–160. https://doi.org/10.1006/abio.1995.1124

Herrera-Fuentes, I. A., Quimis-Ponce, K. L., Sorroza-Rojas, N. A., García-Larreta, F. S., Mariscal-Santi, W., & Mariscal-Garcia, R. E. (2017). Determinación de Taninos y Cumarinas presente en la planta tres filos. Polo Del Conocimiento, 2(7), 500. https://doi.org/10.23857/pc.v2i7.257

IICA, SEA, CNC. (2006). Estudio de la Cadena Agroalimentaria de Ajo en la República Dominicana. Instituto Interamericano de Cooperación para la Agricultura.

Indra Purnama, A. L., Yulistiani, R., Agung Wicaksono, L., Setyarini, W., Arizandy, R. Y., & Putri Febrianti, N. D. (2023). The Shelf-Life Prediction of Black Garlic Chili Sauce and “Cahyo” Garlic Chili Sauce with Accelerated Shelf-Life Testing (ASLT) Method Based on The Arrhenius Model. Asian Journal of Applied Research for Community Development and Empowerment, 7(1), 104–119. https://doi.org/10.29165/ajarcde.v7i1.227

Kopeć, A., Skoczylas, J., Jędrszczyk, E., Francik, R., Bystrowska, B., & Zawistowski, J. (2020). Chemical composition and concentration of bioactive compounds in garlic cultivated from air bulbils. Agriculture (Switzerland), 10(2). https://doi.org/10.3390/agriculture10020040

Liaqat, A., Zahoor, T., Atif Randhawa, M., & Shahid, M. (2019). Characterization and antimicrobial potential of bioactive components of sonicated extract from garlic (Allium sativum) against foodborne pathogens. Journal of Food Processing and Preservation, 43(5). https://doi.org/10.1111/jfpp.13936

Mayulu, H., & Sawitri, E. (2023). Black Garlic Phytochemical Potential and Antioxidant Capacity as a Feed Additive. Advances in Animal and Veterinary Sciences, 11(7), 1047–1056. https://doi.org/10.17582/journal.aavs/2023/11.7.1047.1056

Nagella, P., Thiruvengadam, M., Ahmad, A., Yoon, J. Y., & Chung, I. M. (2014). Composition of polyphenols and antioxidant activity of garlic bulbs collected from different Locations of Korea. Asian Journal of Chemistry, 26(3), 897–902. https://doi.org/10.14233/ajchem.2014.16143A

Nurul, S. R., & Asmah, R. (2012). Evaluation of antioxidant properties in fresh and pickled papaya. International Food Research Journal, 19(3), 1117–1124.

Pakakaew, P., Taesuwan, S., Phimolsiripol, Y., & Utama-Ang, N. (2022). Comparison between the Physicochemical Properties, Bioactive Compounds and Antioxidant Activities of Thai and Chinese Garlics. Current Applied Science and Technology, 22(3). https://doi.org/10.55003/cast.2022.03.22.006

Pardede, C., Iriany, Tambun, R., Fitri, M. D., & Husna, R. (2020). Extraction of tannin from garlic skins by using microwave with ethanol as solvent. In IOP Conference Series: Materials Science and Engineering (Vol. 801). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/801/1/012054

Petropoulos, S. A., Fernandes, Â., Ntatsi, G., Petrotos, K., Barros, L., & Ferreira, I. C. F. R. (2018). Nutritional value, chemical charac-terization and bulb morphology of Greek Garlic landraces. Molecules, 23(2). https://doi.org/10.3390/molecules23020319

Puyen, Y., & Baldera, K. (2023). Caracterización fisicoquímica, bromatológica y funcional del ajo fresco (Allium sativum) en las variedades Barranquino, Chino y Napuri [Tesis, Universidad Señor de Sipán]. https://hdl.handle.net/20.500.12802/10760

Qamar, A., Siddiqui, A., & Kumar, H. (2015). Fresh garlic amelioration of high-fat-diet induced fatty liver in albino rats. J Pak Med Assoc, 65(10), 1102-1107.

Ramirez, D. A., Locatelli, D. A., González, R. E., Cavagnaro, P. F., & Camargo, A. B. (2017). Analytical methods for bioactive sulfur compounds in Allium: An integrated review and future directions. Journal of Food Composition and Analysis, 61, 4–19. https://doi.org/10.1016/j.jfca.2016.09.012

Rodriguez-Jimenez, J. R., Amaya-Guerra, C. A., Baez-Gonzalez, J. G., Aguilera-Gonzalez, C., Urias-Orona, V., & Nino-Medina, G. (2018). Physicochemical, functional, and nutraceutical proper-ties of eggplant flours obtained by different drying methods. Molecules, 23(12). https://doi.org/10.3390/molecules23123210

Salihović, M., & Sofić, E. (2021). High Performance Liquid Chromatography Analysis of Rutin in Allium Species Collected in Bosnia and Herzegovina. Kemija u Industriji, 70.

Sari, Y., & Anwar, M. (2022). Antioxidant activity of single bulb garlic callus (Allium sativum L.) extract with in vitro method. AIP Conf. Proc., 2668, 020004. https://doi.org/10.1063/5.0112192

Shuxia, X., S., Siqiong, C., Panpan, L., Junna, D., Yanxia, C., & Huanwen, M. (2013). Evaluation of Garlic Cultivars for Polyphenolic Content and Antioxidant Properties. Plos One, 8(11), e79730. https://doi.org/10.1371/journal.pone.0079730

Skoczylas, J., Jędrszczyk, E., Dziadek, K., Dacewicz, E., & Kopeć, A. (2023). Basic Chemical Composition, Antioxidant Activity and Selected Polyphenolic Compounds Profile in Garlic Leaves and Bulbs Collected at Various Stages of Development. Molecules, 28(18). https://doi.org/10.3390/molecules28186653

Terán-Figueroa, Y., de Loera, D., Toxqui-Terán, A., Montero-Morán, G., & Saavedra-Leos, M. Z. (2022). Bromatological Analysis and Characterization of Phenolics in Snow Mountain Garlic. Molecules, 27(12). https://doi.org/10.3390/molecules27123712

Utama, G. L., Rahmi, Z., Sari, M. P., & Hanidah, I. (2024). Psychochemical changes and functional properties of organosulfur and polysaccharide compounds of black garlic (Allium sativum L.). Current Research in Food Science, 8, 100717. https://doi.org/10.1016/j.crfs.2024.100717

Volk, G. M., & Stern, D. (2009). Phenotypic characteristics of ten garlic cultivars grown at different North American locations. HortScience, 44(5), 1238–1247. https://doi.org/10.21273/hortsci.44.5.1238

Zawistowski, J., Kopec, A., Jȩdrszczyk, E., Francik, R., & Bystrowska, B. (2018). Garlic grown from air bulbils and its potential health benefits. In ACS Symposium Series (Vol. 1286, pp. 315–328). American Chemical Society. https://doi.org/10.1021/bk-2018-1286.ch0017

Zhou, C., Hu, X., Chao, C., Li, H., Zhang, S., Yan, X., Yang, F., & Li, Q. (2015). Quantitation of allicin in garlic-based products: Comparisons among spectrophotometry, GC and HPLC. Advance Journal of Food Science and Technology, 9(4), 269–277. https://doi.org/10.19026/ajfst.9.2007

Descargas

Publicado

2025-05-13

Cómo citar

Blanco-Rodríguez, N., Castillo-Morrobel, G., Rosa-de la Cruz, A., Mejía-Brea, J., Pérez-González, E., Alcántara-Marte, Y., & Alcántara-De Tejada, Y. (2025). Contenido de grasa total y compuestos bioactivos de diferentes genotipos de ajo (Allium sativum L.), cultivados en República Dominicana. Agroindustrial Science, 15(2), 173-181. https://doi.org/10.17268/agroind.sci.2025.02.09

Número

Sección

Artículos de investigación