Contenido de grasa total y compuestos bioactivos de diferentes genotipos de ajo (Allium sativum L.), cultivados en República Dominicana
DOI:
https://doi.org/10.17268/agroind.sci.2025.02.09Palabras clave:
Allium sativum L., Genotipos, Grasa Total, Capacidad Antioxidante, Compuestos BioactivosResumen
El ajo es una especie vegetal muy consumida alrededor del mundo. En República Dominicana existe alta diversidad genética en las variedades de ajo blanco y morado cultivadas en Constanza, La Vega, habiendo sido cultivados más de veinte genotipos; sin embargo, algunos han desaparecido o su producción ha sido descontinuada debido a poca adaptabilidad, productividad o conveniencia, principalmente por la ausencia de caracterización a nivel químico. En esta investigación se analizó el contenido de grasa total y compuestos bioactivos de los genotipos que prevalecen y se cultivan: Taiwán 1, Taiwán 2, Taiwán 3, Taiwán 3A, Taiwán 05, Morado cubano, Morado cubano #3, Morado Rosello, Morado Rosello #1, Morado Niño, IDIAF 1, IDIAF SEA 14 y Ramón Collado. Se empleó un diseño completamente al azar y se aplicó un ANOVA y la prueba de Tukey al 95% de confianza. Los resultados fueron: grasa total (0,08 a 0,38 % base seca), alicina (167,92 a 2.335,55 mg/Kg), actividad antioxidante (23,83 a 98,83 μmolTE/100g), contenido fenólico total (89,70 a 136,85 mgGAE/100g), taninos (293,33 a 535,76 mg TAE/Kg) y flavonoides (23,78 a 61,62 μgEqRutin/g). La grasa total y los compuestos bioactivos fluctúan entre los genotipos, remarcando la diferencia en la composición química según su variación genética.
Citas
Andarwulan, N., Fardiaz, D., Wattimena, G. A., & Shetty, K. (1999). Antioxidant Activity Associated with Lipid and Phenolic Mobilization during Seed Germination of Pangium edule Reinw. Journal of Agricultural and Food Chemistry, 47(8), 3158–3163. doi:10.1021/jf981287a
Atif, M. J., Amin, B., Ghani, M. I., Ali, M., & Cheng, Z. (2020). Variation in morphological and quality parameters in garlic (Allium sativum L.) bulb influenced by different photoperiod, temperature, sowing and harvesting time. Plants, 9(2). https://doi.org/10.3390/plants9020155
Avgeri, I., Zeliou, K., Petropoulos, S. A., Bebeli, P. J., Papasotiropoulos, V., & Lamari, F. N. (2020). Variability in bulb organosulfur compounds, sugars, phenolics, and pyruvate among greek garlic genotypes: Association with antioxidant properties. Antioxidants, 9(10), 1–14. https://doi.org/10.3390/antiox9100967
Azizah, Z., Sarina, G., & Putri, W. Y. (2022). Antioxidant Activity of the Ethyl Acetate Fraction, N- Hexane Fraction from the Ethanol Extract of Black Garlic (Allium Sativum L.) using the 2,2- Diphenyl 1-Picrylhydrazyl (DPPH). International Journal of Research Publication and Reviews, 3(12), 742–748. https://doi.org/10.55248/gengpi.2022.31217
Barboza, M., Pérez, M., Dhall, R., & Cavagnaro, P. (2022). Genotypic and environmental effects on the compounds associated with garlic flavor, health‐enhancing properties, and postharvest conservation. Crop Science, 62(5), 1807-1820. https://doi.org/10.1002/csc2.20780
Bustos-Hipólito, E., Legorreta-Siañez, A. V., Luisa, A., Garfias, J., González-González, L. R., & Arenas-Huertero, F. J. (2012). Efecto de la extracción de los compuestos antioxidantes de la cáscara de manzana con solventes, sobre la bioactividad y su capacidad antioxidante. Revista Facultad de Ciencia y Tecnología, 11, 123–130.
Cavagnaro, P. F., & Burba, J. L. (2022). Genetic and environmental factors influencing garlic anthocyanin pigmentation: a review. Horticultura Argentina, 41(106), 103–123.
Čeryová, N., Čičová, I., Lidiková, J., Šnirc, M., Horváthová, J., Lichtnerová, H., & Franková, H. (2021). The Content of Bioactive Compounds and Antioxidant Activity of Garlic (Allium sativum L.). Potravinarstvo Slovak Journal of Food Sciences, 15, 1104–1111. https://doi.org/10.5219/1694
Čeryová, N., Lidiková, J., Pintér, E., Šnirc, M., Franková, H., Ňorbová, M., & Fedorková, S. (2023). Total polyphenol content, total flavonoid content, and antioxidant activity of garlic (Allium sativum L.) cultivars. Journal of microbiology, biotechnology and food sciences, 13(1), e9668-e9668.
Dinu, M., Soare, R., Băbeanu, C., & Botu, M. (2023). Evaluation of Productivity Components and Antioxidant Activity of Different Types of Garlic Depending on the Morphological Organs. Horticulturae, 9(9). https://doi.org/10.3390/horticulturae9091039
Galgaye, G. G. (2023). Effect of garlic genotypes (Allium sativum L.) on phenotype, growth, yield-related attributes, and nutritional quality at Bule Hora agro-ecology. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e16317
Gao, X., Zhou, Y., Gu, J., Liu, X., & Zhang, Z. (2023). Construction and Activity Study of a Natural Antibacterial Patch Based on Natural Active Substance-Green Porous Structures. Molecules, 28(3). https://doi.org/10.3390/molecules28031319
Gimeno, E. (2004). Compuestos fenólicos. Un análisis de sus beneficios para la salud. OFFARM, 23, 80–84.
Gong, H., Wang, T., Hua, Y., Wang, W. D., Shi, C., Xu, H. X., … Yu, N. N. (2022). Garlic varieties and drying methods affected the physical properties, bioactive compounds and antioxidant capacity of dried garlic powder. CYTA - Journal of Food, 20(1), 111–119. https://doi.org/10.1080/19476337.2022.2093400
Habuš Jerčić, I., Bošnjak Mihovilović, A., Matković Stanković, A., Lazarević, B., Goreta Ban, S., Ban, D., … Kereša, S. (2023). Garlic Ecotypes Utilise Different Morphological, Physiological and Biochemical Mechanisms to Cope with Drought Stress. Plants, 12(9). https://doi.org/10.3390/plants12091824
Han, J., Lawson, L., Han, G., & Han, P. (1995). Spectrophotometric Method for Quantitative Determination of Allicin and Total Garlic Thiosulfinates. Analytical Biochemistry, 225(1), 157–160. https://doi.org/10.1006/abio.1995.1124
Herrera-Fuentes, I. A., Quimis-Ponce, K. L., Sorroza-Rojas, N. A., García-Larreta, F. S., Mariscal-Santi, W., & Mariscal-Garcia, R. E. (2017). Determinación de Taninos y Cumarinas presente en la planta tres filos. Polo Del Conocimiento, 2(7), 500. https://doi.org/10.23857/pc.v2i7.257
IICA, SEA, CNC. (2006). Estudio de la Cadena Agroalimentaria de Ajo en la República Dominicana. Instituto Interamericano de Cooperación para la Agricultura.
Indra Purnama, A. L., Yulistiani, R., Agung Wicaksono, L., Setyarini, W., Arizandy, R. Y., & Putri Febrianti, N. D. (2023). The Shelf-Life Prediction of Black Garlic Chili Sauce and “Cahyo” Garlic Chili Sauce with Accelerated Shelf-Life Testing (ASLT) Method Based on The Arrhenius Model. Asian Journal of Applied Research for Community Development and Empowerment, 7(1), 104–119. https://doi.org/10.29165/ajarcde.v7i1.227
Kopeć, A., Skoczylas, J., Jędrszczyk, E., Francik, R., Bystrowska, B., & Zawistowski, J. (2020). Chemical composition and concentration of bioactive compounds in garlic cultivated from air bulbils. Agriculture (Switzerland), 10(2). https://doi.org/10.3390/agriculture10020040
Liaqat, A., Zahoor, T., Atif Randhawa, M., & Shahid, M. (2019). Characterization and antimicrobial potential of bioactive components of sonicated extract from garlic (Allium sativum) against foodborne pathogens. Journal of Food Processing and Preservation, 43(5). https://doi.org/10.1111/jfpp.13936
Mayulu, H., & Sawitri, E. (2023). Black Garlic Phytochemical Potential and Antioxidant Capacity as a Feed Additive. Advances in Animal and Veterinary Sciences, 11(7), 1047–1056. https://doi.org/10.17582/journal.aavs/2023/11.7.1047.1056
Nagella, P., Thiruvengadam, M., Ahmad, A., Yoon, J. Y., & Chung, I. M. (2014). Composition of polyphenols and antioxidant activity of garlic bulbs collected from different Locations of Korea. Asian Journal of Chemistry, 26(3), 897–902. https://doi.org/10.14233/ajchem.2014.16143A
Nurul, S. R., & Asmah, R. (2012). Evaluation of antioxidant properties in fresh and pickled papaya. International Food Research Journal, 19(3), 1117–1124.
Pakakaew, P., Taesuwan, S., Phimolsiripol, Y., & Utama-Ang, N. (2022). Comparison between the Physicochemical Properties, Bioactive Compounds and Antioxidant Activities of Thai and Chinese Garlics. Current Applied Science and Technology, 22(3). https://doi.org/10.55003/cast.2022.03.22.006
Pardede, C., Iriany, Tambun, R., Fitri, M. D., & Husna, R. (2020). Extraction of tannin from garlic skins by using microwave with ethanol as solvent. In IOP Conference Series: Materials Science and Engineering (Vol. 801). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/801/1/012054
Petropoulos, S. A., Fernandes, Â., Ntatsi, G., Petrotos, K., Barros, L., & Ferreira, I. C. F. R. (2018). Nutritional value, chemical charac-terization and bulb morphology of Greek Garlic landraces. Molecules, 23(2). https://doi.org/10.3390/molecules23020319
Puyen, Y., & Baldera, K. (2023). Caracterización fisicoquímica, bromatológica y funcional del ajo fresco (Allium sativum) en las variedades Barranquino, Chino y Napuri [Tesis, Universidad Señor de Sipán]. https://hdl.handle.net/20.500.12802/10760
Qamar, A., Siddiqui, A., & Kumar, H. (2015). Fresh garlic amelioration of high-fat-diet induced fatty liver in albino rats. J Pak Med Assoc, 65(10), 1102-1107.
Ramirez, D. A., Locatelli, D. A., González, R. E., Cavagnaro, P. F., & Camargo, A. B. (2017). Analytical methods for bioactive sulfur compounds in Allium: An integrated review and future directions. Journal of Food Composition and Analysis, 61, 4–19. https://doi.org/10.1016/j.jfca.2016.09.012
Rodriguez-Jimenez, J. R., Amaya-Guerra, C. A., Baez-Gonzalez, J. G., Aguilera-Gonzalez, C., Urias-Orona, V., & Nino-Medina, G. (2018). Physicochemical, functional, and nutraceutical proper-ties of eggplant flours obtained by different drying methods. Molecules, 23(12). https://doi.org/10.3390/molecules23123210
Salihović, M., & Sofić, E. (2021). High Performance Liquid Chromatography Analysis of Rutin in Allium Species Collected in Bosnia and Herzegovina. Kemija u Industriji, 70.
Sari, Y., & Anwar, M. (2022). Antioxidant activity of single bulb garlic callus (Allium sativum L.) extract with in vitro method. AIP Conf. Proc., 2668, 020004. https://doi.org/10.1063/5.0112192
Shuxia, X., S., Siqiong, C., Panpan, L., Junna, D., Yanxia, C., & Huanwen, M. (2013). Evaluation of Garlic Cultivars for Polyphenolic Content and Antioxidant Properties. Plos One, 8(11), e79730. https://doi.org/10.1371/journal.pone.0079730
Skoczylas, J., Jędrszczyk, E., Dziadek, K., Dacewicz, E., & Kopeć, A. (2023). Basic Chemical Composition, Antioxidant Activity and Selected Polyphenolic Compounds Profile in Garlic Leaves and Bulbs Collected at Various Stages of Development. Molecules, 28(18). https://doi.org/10.3390/molecules28186653
Terán-Figueroa, Y., de Loera, D., Toxqui-Terán, A., Montero-Morán, G., & Saavedra-Leos, M. Z. (2022). Bromatological Analysis and Characterization of Phenolics in Snow Mountain Garlic. Molecules, 27(12). https://doi.org/10.3390/molecules27123712
Utama, G. L., Rahmi, Z., Sari, M. P., & Hanidah, I. (2024). Psychochemical changes and functional properties of organosulfur and polysaccharide compounds of black garlic (Allium sativum L.). Current Research in Food Science, 8, 100717. https://doi.org/10.1016/j.crfs.2024.100717
Volk, G. M., & Stern, D. (2009). Phenotypic characteristics of ten garlic cultivars grown at different North American locations. HortScience, 44(5), 1238–1247. https://doi.org/10.21273/hortsci.44.5.1238
Zawistowski, J., Kopec, A., Jȩdrszczyk, E., Francik, R., & Bystrowska, B. (2018). Garlic grown from air bulbils and its potential health benefits. In ACS Symposium Series (Vol. 1286, pp. 315–328). American Chemical Society. https://doi.org/10.1021/bk-2018-1286.ch0017
Zhou, C., Hu, X., Chao, C., Li, H., Zhang, S., Yan, X., Yang, F., & Li, Q. (2015). Quantitation of allicin in garlic-based products: Comparisons among spectrophotometry, GC and HPLC. Advance Journal of Food Science and Technology, 9(4), 269–277. https://doi.org/10.19026/ajfst.9.2007
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Nelson Blanco-Rodríguez, Gacela Castillo-Morrobel, Atharva Rosa-de la Cruz, Julio Mejía-Brea, Esclaudys Pérez-González, Yulisa Alcántara-Marte, Yanilka Alcántara-De Tejada

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores conservan sus derechos de autor sin restricciones.