Micropropagation of banana cv. Williams through temporary immersion system: Response to explant density and plant growth regulators
DOI:
https://doi.org/10.17268/agroind.sci.2025.01.05Palabras clave:
banana, plant biotechnology, bioengineering, explant density, plant growth regulatorsResumen
Banana presents issues with conventional propagation due to a low multiplication rate and diseases. Micropropagation allows the mass production of seedlings with better agronomic characteristics under controlled laboratory conditions, it uses explants and plant growth regulators (PGR) at different stages. Plant tissue culture (PTC) allows nutrients to be provided through the use of bioreactors with a temporary immersion system (TIS), the immersion of the plant material in the culture medium periodically prompts better individuals by facilitating the interaction of the plant material with the culture medium. The aim of this study was to evaluate the response to micropropagation of banana cv. Williams during the multiplication stage using RITA® (Recipient for Automated Temporary Immersion) bioreactors. For this purpose, two experiments were carried out: one using different explant density and the other one using different concentrations of plant growth regulators. The explants of banana correspond to the fourth subculture obtained from shoot meristems. The results obtained after 21 days of culture showed high multiplication rates and highlighted the usefulness of bioreactors with temporary immersion systems (TIS) to successfully propagate banana.
Citas
Alvarez, S. P., Tapia, M. A. M., Vega, M. E. G., Ardisana, E. F. H., Medina, J. A. C., Zamora, G. L. F., & Bustamante, D. V. (2019). Nanotechnology and Plant Tissue Culture. In R. Prasad. (Ed.), Plant Nanobionics (333–370). Berlin, Alemania: Springer. https://doi.org/10.1007/978-3-030-12496-0_12
Bayraktar, M. (2019). Micropropagation of Stevia rebaudiana Bertoni Using RITA® Bioreactor. HortScience horts, 54(4), 725-731. https://doi.org/10.21273/HORTSCI13846-18
Bello-Bello, J. J., Schettino-Salomón, S., Ortega-Espinoza, J., & Spinoso-Castillo, J. L. (2021). A temporary immersion system for mass micropropagation of pitahaya (Hylocereus undatus). Biotech, 11(10), 437. https://doi.org/10.1007/s13205-021-02984-5
Bhowmik, T. K., & Rahman, M. M. (2020). Micropropagation of commercially important orchid Dendrobium palpebrae Lindl. through in vitro developed pseudobulb culture. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(3), 225–232. https://doi.org/10.5455/jabet.2020.d128
Bozkurt, T., İnan, S., & Dündar, İ. (2023). Comparison of Temporary Immersion Bioreactor (SETISTM) and Classical Solid Culture in Micropropagation of ‘Grand Naine’(Musa spp.) Banana Cultivar. Journal of Agricultural Science, 15(12). https://doi.org/10.5539/jas.v15n12p51
Capaci, P., Barozzi, F., Forciniti, S., Anglana, C., Iuele, H., Accogli, R. A., Carra, A., Lenucci, M. S., del Mercato, L. L., & Di Sansebastiano, G. P. (2024). RITA® Temporary Immersion System (TIS) for Biomass Growth Improvement and Ex Situ Conservation of Viola ucriana Erben & Raimondo. Plants, 13(24), 3530. https://doi.org/10.3390/plants13243530
Clapa, D., Nemeș, S.-A., Ranga, F., Hârța, M., Vodnar, D.-C., & Călinoiu, L.-F. (2022). Micropropagation of Vaccinium corymbosum L.: An Alternative Procedure for the Production of Secondary Metabolites. Horticulturae, 8(6), 480. https://doi.org/10.3390/horticulturae8060480
Cardoso, J. C., Zanello, C. A., & Chen, J. T. (2020). An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. International Journal of Molecular Sciences, 21(3), 985. https://doi.org/10.3390/ijms21030985
Carvalho, L. S. O., Ozudogru, E. A., Lambardi, M., & Paiva, L. V. (2019). Temporary immersion system for micropropagation of tree species: a bibliographic and systematic review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(2), 269-277. https://doi.org/10.15835/nbha47111305
Coetser, E., du Toit, E. S., & Prinsloo, G. (2022). An Investigation into Using Temporary Immersion Bioreactors to Micropropagate Moringa oleifera Lam. Callus, Roots, and Shoots. Agronomy, 12(11), 2672. https://doi.org/10.3390/agronomy12112672
De Carlo, A., Tarraf, W., Lambardi, M., & Benelli, C. (2021). Temporary immersion system for production of biomass and bioactive compounds from medicinal plants. Agronomy 11(12), 2414. https://doi.org/10.3390/agronomy11122414
Gago, D., Sánchez, C., Aldrey, A., Christie, C. B., Bernal, M. Á., & Vidal, N. (2022). Micropropagation of Plum (Prunus domestica L.) in bioreactors using photomixotrophic and photoautotrophic conditions. Horticulturae, 8(4), 286. https://doi.org/10.3390/horticulturae8040286
Grieneisen, V. A., Xu, J., Marée, A. F. M., Hogewep, P., & Scheres, B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 449(7165), 1008–1013. https://doi.org/10.1038/nature06215
Hwang, H. D., Kwon, S. H., Murthy, H. N., Yun, S. W., Pyo, S. S., & Park, S. Y. (2022). Temporary immersion bioreactor system as an efficient method for mass production of in vitro plants in horticulture and medicinal plants. Agronomy, 12(2), 346. https://doi.org/10.3390/agronomy12020346
Husen, S., Purnomo, A. E., Tina, S. A., Iriany, A., Wahyono, P., & Roeswitawati, D. (2024). Liquid culture for efficient in vitro propagation of potato (Solanum tuberosum L.) using bioreactor system. Australian Journal of Crop Science, 18(6), 365-373. https://doi.org/10.21475/ajcs.24.18.06.pne63
Hussein, N. (2012). Effects of nutrient media constituents on growth and development of banana (Musa spp.) shoot tips cultured in vitro. African Journal of Biotechnology, 11(37), 9001-9006. https://doi.org/10.5897/AJB11.4173
Katel, S., Yadav, S. P. S., & Sharma, B. (2022). Impacts of plant growth regulators in strawberry plant: A review. Heliyon 8(12), e11959. https://doi.org/10.1016/j.heliyon.2022.e11959
Khafri, A. Z., Zarghami, R., Ma’mani, L., & Ahmadi, B. (2023). Enhanced efficiency of in vitro rootstock micro-propagation using silica-based nanoparticles and plant growth regulators in myrobalan 29C (Prunus cerasifera L.). Journal of Plant Growth Regulation, 42(3), 1457-1471. https://doi.org/10.1007/s00344-022-10631-3
Kikowska, M., Danek, K., Gornowicz-Porowska, J., & Thiem, B. (2022). Application of temporary immersion system RITA® for efficient biomass multiplication and production of artificial seeds for ex situ conservation of Linnaea borealis L. Plant Cell, Tissue and Organ Culture (PCTOC), 151(3), 673-680. https://doi.org/10.1007/s11240-022-02381-7
Krol, A., Kokotkiewicz, A., Szopa, A., Ekiert, H.M., & Luczkiewicz, M. (2021). Bioreactor-Grown Shoot Cultures for the Secondary Metabolite Production. In K. G. Ramawat, H. M. Ekiert, S. Goyal (Eds.), Plant Cell and Tissue Differentiation and Secondary Metabolites (187–247). Cham, Suiza: Springer. https://doi.org/10.1007/978-3-030-30185-9_34
Kumari, S., Bakshi, P., Sharma, A., Wali, V. K., Jasrotia, A., & Kour, S. (2018). Use of plant growth regulators for improving fruit production in sub tropical crops. International Journal of Current Microbiology and Applied Sciences, 7(3), 659-668. https://doi.org/10.20546/ijcmas.2018.703.077
Kunakhonnuruk, B., Inthima, P., & Kongbangkerd, A. (2019). In vitro propagation of Rheophytic Orchid, Epipactis flava Seidenf. - A Comparison of Semi-solid, Continuous Immersion and Temporary Immersion Systems. Biology, 8(4), 72. https://doi.org/10.3390/biology8040072
Lakho, M. A., Jatoi, M. A., Solangi, N., Abul-Soad, A. A., Qazi, M. A., & Abdi, G. (2023). Optimizing in vitro nutrient and ex vitro soil mediums-driven responses for multiplication, rooting, and acclimatization of pineapple. Scientific Reports, 13(1), 1275. https://doi.org/10.1038/s41598-023-28359-9
Makowski, W., Królicka, A., Tokarz, B., Szopa, A., Ekiert, H., & Tokarz, K. M. (2023). Temporary immersion bioreactors as a useful tool for obtaining high productivity of phenolic compounds with strong antioxidant properties from Pontechium maculatum. Plant Cell, Tissue and Organ Culture (PCTOC), 153(3), 525-537. https://doi.org/10.1007/s11240-023-02487-6
Mamun, N.H.A., Egertsdotter, U., & Aidun, C.K. (2015). Bioreactor technology for clonal propagation of plants and metabolite production. Frontiers in Biology, 10(2), 177–193. https://doi.org/10.1007/s11515-015-1355-1
Melviana, A. C., Esyanti, R. R., Mel, M., & Setyobudi, R. H. (2021). Biomass enhancement of Stevia rebaudiana Bertoni Shoot culture in temporary immersion system (TIS) RITA® bioreactor optimized in two different immersion periods. EDP Sciences 226(7), 1-9. https://doi.org/10.1051/e3sconf/202122600007
Monja-Mio, K. M., Olvera-Casanova, D., Herrera-Alamillo, M. Á., Sánchez-Teyer, F. L., & Robert, M. L. (2021). Comparison of conventional and temporary immersion systems on micropropagation (multiplication phase) of Agave angustifolia Haw. ‘Bacanora’. 3 Biotech, 11, 77. https://doi.org/10.1007/s13205-020-02604-8
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nielsen, E., Temporiti, M. E. E. & Cella, R. (2019). Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. Plant Cell Reports, 38(10), 1199–1215. https://doi.org/10.1007/s00299-019-02415-z
Raghavan, V. (2004). Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. American Journal of Botany, 91(11), 1743–1756. https://doi.org/10.3732/AJB.91.11.1743
Ramírez-Mosqueda, M. A., Sánchez-Segura, L., Hernández-Valladolid, S. L., Bello-Bello, E., & Bello-Bello, J. J. (2020). Influence of silver nanoparticles on a common contaminant isolated during the establishment of Stevia rebaudiana Bertoni culture. Plant Cell Tissue and Organ Culture, 143(3): 609‑618. https://doi.org/10.1007/s11240‑020‑01945‑9
Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., Ramírez-Madero, G., & Hernández-Rincón, E. U. (2016). Micropropagation of Stevia rebaudiana Bert. in temporary immersion systems and evaluation of genetic fidelity. South African Journal of Botany, 106, 238-243. https://doi.org/10.1016/j.sajb.2016.07.01
Rico, S., Garrido, J., Sánchez, C., Ferreiro-Vera, C., Codesido, V., & Vidal, N. (2022). A temporary immersion system to improve Cannabis sativa micropropagation. Frontiers in Plant Science, 13, 895971. https://doi.org/10.3389/fpls.2022.895971
San José, M. C., Blázquez, N., Cernadas, M. J., Janeiro, L. V., Cuenca, B., Sánchez, C., & Vidal, N. (2020). Temporary immersion systems to improve alder micropropagation. Plant Cell Tissue and Organ Culture, 143, 265-275. https://doi.org/10.1007/s11240-020-01937-9
Sharma, L., Priya, M., Kaushal, N., Bhandhari, K., Chaudhary, S., Dhankher, O. P., Prasad, P. V. V., Siddique, K. H. M., & Nayyar, H. (2020). Plant growth-regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops. Journal of Experimental Botany, 71(2), 569–594. https://doi.org/10.1093/jxb/erz333
Sosnowski, J., Truba, M., & Vasileva, V. (2023). The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture, 13(3), 724. https://doi.org/10.3390/agriculture13030724
Su, Y. H., Tang, L. P., Zhao, X. Y., & Zhang, X. S. (2021). Plant cell totipotency: Insights into cellular reprogramming. Journal of Integrative Plant Biology, 63, 228-240. https://doi.org/10.1111/jipb.12972
Teisson, C., Alvard, D., Berthouly, B., Cote, F., Escalant, J., Etienne, H., & Lartaud, M. (1996). Simple apparatus to perform plant tissue culture by temporary immersion. Acta Horticulturae, 440, 521-526. https://doi.org/10.17660/ActaHortic.1996.440.91
Thanonkeo, S., Kitwetcharoen, H., Thanonkeo, P., & Klanrit, P. (2024). Temporary Immersion Bioreactor (TIB) System for Large-Scale Micropropagation of Musa sp. cv Kluai Numwa Pakchong 50. Horticulturae, 10(10), 1030. https://doi.org/10.3390/horticulturae10101030
Uma, S., Karthic, R., Kalpana, S., & Backiyarani, S. (2023). Evaluation of temporary immersion bioreactors for in vitro micropropagation of banana (Musa spp.) and genetic fidelity assessment using flow cytometry and simple-sequence repeat markers. South African Journal of Botany, 157, 553-565. https://doi.org/10.1016/j.sajb.2023.04.006
Uma, S., Karthic, R., Kalpana, S., Backiyarani, S., & Saraswathi, M. S. (2021). A novel temporary immersion bioreactor system for large scale multiplication of banana (Rasthali AAB—Silk). Scientific Reports, 11(1), 20371. https://doi.org/10.1038/s41598-021-99923-4
Vidal, N., & Sánchez, C. (2019). Use of bioreactor systems in the propagation of forest trees. Engineering in Life Sciences, 19(12), 896-915. https://doi.org/10.1002/elsc.201900041
Wybouw, B., & De Rybel, B. (2018). Cytokinin – A Developing Story. Trends in Plant Science, 24(2), 177-185. https://doi.org/10.1016/j.tplants.2018.10.012
Zhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022). Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells, 11(17), 2761. https://doi.org/10.3390/cells11172761
Descargas
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores conservan sus derechos de autor sin restricciones.