Valorización de residuos de comida mediante potencial bioquímico de metano

Autores/as

DOI:

https://doi.org/10.17268/agroind.sci.2025.01.02

Palabras clave:

Biogás, BMP, economía circular, residuos de alimentos, revalorización de residuos

Resumen

Los residuos de alimentos (FW) son materiales desechados en las cadenas de producción, suministro y distribución de productos destinados al consumo humano. La digestión anaeróbica (DA) se ha consolidado como una práctica clave dentro de la economía circular, transformando estos residuos en biogás y fertilizantes orgánicos. Para evaluar la viabilidad de diferentes sustratos en procesos de DA, se utiliza ampliamente la metodología del potencial bioquímico de metano (BMP). Sin embargo, los resultados de BMP pueden variar significativamente debido a las condiciones experimentales y la heterogeneidad de los residuos. Este estudio presenta una revisión bibliométrica y sistemática de la literatura publicada entre 2019 y 2024 sobre el uso de BMP en la valorización de FW, analizando las variaciones en las metodologías y los factores que afectan los resultados experimentales. De un total de 497 estudios identificados, 34 fueron seleccionados para un análisis detallado. Los hallazgos ofrecen una visión integral de las tendencias actuales en la investigación, subrayando la necesidad de estandarizar metodologías y condiciones experimentales para obtener resultados más consistentes y replicables. Además, se identifican barreras y oportunidades para optimizar la eficiencia y sostenibilidad de los procesos de DA, con implicaciones para investigaciones futuras y su implementación a gran escala en la gestión de residuos.

Citas

Agrawal, A., Chaudhari, P. K., & Ghosh, P. (2024). Effect of inoculums type and optimization of inoculum to substrate ratio on the kinetics of biogas production of fruit and vegetable waste. Environmental Engineering Research, 29(1), 220518. https://doi.org/10.4491/eer.2022.518

Albalate-Ramírez, A., Padilla-Rivera, A., Rueda-Avellaneda, J. F., López-Hernández, B. N., Cano-Gómez, J. J., & Rivas-García, P. (2024). Mapping the Sustainability of Waste-to-Energy Processes for Food Loss and Waste in Mexico—Part 1: Energy Feasibility Study. Sustainability, 16(14), 6111. https://doi.org/10.3390/su16146111

Ambaye, T. G., Rene, E. R., Dupont, C., Wongrod, S., & van Hullebusch, E. D. (2020). Anaerobic Digestion of Fruit Waste Mixed With Sewage Sludge Digestate Biochar: Influence on Biomethane Production. Frontiers in Energy Research, 8, 31. https://doi.org/10.3389/fenrg.2020.00031

Aworanti, O. A., Ajani, A. O., Agbede, O. O., Agarry, S. E., Ogunkunle, O., Laseinde, O. T., Kalam, M. A., & Fattah, I. M. R. (2023). Enhancing and upgrading biogas and biomethane production in anaerobic digestion: a comprehensive review. Frontiers in Energy Research, 11, 1170133. https://doi.org/10.3389/fenrg.2023.1170133

Baek, G., Kim, D., Kim, J., Kim, H., & Lee, C. (2020). Treatment of cattle manure by anaerobic co-digestion with food waste and pig manure: Methane yield and synergistic effect. International Journal of Environmental Research and Public Health, 17(13), 4737. https://doi.org/10.3390/ijerph17134737

Batool, N., Qazi, J. I., Aziz, N., Hussain, A., & Shah, S. Z. H. (2020). Bio-methane production potential assays of organic waste by anaerobic digestion and co-digestion. Pakistan Journal of Zoology, 52(3), 971–976. https://doi.org/10.17582/journal.pjz/20190322170334

Burmistrova, J., Beutel, M., Hestir, E., Ryals, R., & Pandey, P. (2022). Anaerobic Co-Digestion to Enhance Waste Management Sustainability at Yosemite National Park. Sustainability, 14(19), 11877. https://doi.org/10.3390/su141911877

Cabrita, T. M., & Santos, M. T. (2023). Biochemical Methane Potential Assays for Organic Wastes as an Anaerobic Digestion Feedstock. Sustainability, 15(15), 11573. https://doi.org/10.3390/su151511573

Capson-Tojo, G. Rouez, M. Crest, M. Steyer, J. Delgenes, J. Escudié, R. (2016). Food waste valorization via anaerobic processes : a review. Rev Environ Sci Biotechnol, 15, 499–547. https://doi.org/10.1007/s11157-016-9405-y

Choudhury, A., & Lansing, S. (2019). Methane and hydrogen sulfide production from co-digestion of gummywaste with a food waste, greasewaste, and dairy manure mixture. Energies, 12(23), 4464. https://doi.org/10.3390/en12234464

Dhungana, B., Lohani, S. P., & Marsolek, M. (2022). Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals. Sustainability, 14(6), 3307. https://doi.org/10.3390/su14063307

Domingues, P. S. (2021). Main Biogas Upgrading Technologies. International Journal of Environmental Sciences & Natural Resources, 27(4), 556219. https://doi.org/10.19080/ijesnr.2021.27.556219

Dompara, I., Maragkaki, A., Papastefanakis, N., Floraki, C., Vernardou, D., & Manios, T. (2023). Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste. Sustainability, 15(7), 5698. https://doi.org/10.3390/su15075698

Fernández-Rodríguez, J., Di Berardino, M., & Di Berardino, S. (2023). Promoting the Circular Economy on an Island: Anaerobic Co-Digestion of Local Organic Substrates as a Possible Renewable Energy Source. Microorganisms, 11(2), 285. https://doi.org/10.3390/microorganisms11020285

Fuentes, J. C., Cañón, L. A., Pérez, Á. V., Pinzón, C. E., Pérez, A. M., Avellaneda, P. A., Enrique, Á., & Enrique, J. (2017). Metodologías para la priorización en investigación en salud: una revisión sistemática de la literatura. Pan American Journal of Public Health, 41, e122. https://doi.org/10.26633/RPSP.2017.122

Gadirli, G., Pilarska, A. A., Dach, J., Pilarski, K., & Kolasa-wi, A. (2024). Fundamentals , Operation and Global Prospects for the Development of Biogas Plants — A Review. Energies, 17(3), 568. https://doi.org/10.3390/en17030568

Gandhi, B. P., Otite, S. V., Fofie, E. A., Lag-Brotons, A. J., Ezemonye, L. I., Semple, K. T., & Martin, A. D. (2022). Kinetic investigations into the effect of inoculum to substrate ratio on batch anaerobic digestion of simulated food waste. Renewable Energy, 195(5), 311–321. https://doi.org/10.1016/j.renene.2022.05.134

García-Depraect, O., Martínez-Mendoza, L. J., Diaz, I., & Muñoz, R. (2022). Two-stage anaerobic digestion of food waste: Enhanced bioenergy production rate by steering lactate-type fermentation during hydrolysis-acidogenesis. Bioresource Technology, 358, 127358. https://doi.org/10.1016/j.biortech.2022.127358

García-Gómez, C. (2024). Potential applications of microalgae bacteria consortia for waste treatment and valuable bioproducts. Scientia Agricolis Vita, 1(1), 21–29. https://doi.org/10.29105/agricolis.v1i1.6

Gu, Y. M., Park, S. Y., Park, J. Y., Sang, B. I., Jeon, B. S., Kim, H., & Lee, J. H. (2021). Impact of attrition ball-mill on characteristics and biochemical methane potential of food waste. Energies, 14(8), 2085. https://doi.org/10.3390/en14082085

He, K., Liu, Y., Tian, L., He, W., & Cheng, Q. (2024). Review in anaerobic digestion of food waste. Heliyon, 10(7), e28200. https://doi.org/10.1016/j.heliyon.2024.e28200

Hu, J., Stenchly, K., Gwenzi, W., Wachendorf, M., & Kaetzl, K. (2023). Critical evaluation of biochar effects on methane production and process stability in anaerobic digestion. Frontiers in Energy Research, 11, 1205818. https://doi.org/10.3389/fenrg.2023.1205818

Kalogiannis, A., Diamantis, V., Eftaxias, A., & Stamatelatou, K. (2024). Long-Term Anaerobic Digestion of Seasonal Fruit and Vegetable Waste Using a Leach-Bed Reactor Coupled to an Upflow Anaerobic Sludge Bed Reactor. Sustainability, 16(1), 50. https://doi.org/10.3390/su16010050

Laiq Ur Rehman, M., Iqbal, A., Chang, C. C., Li, W., & Ju, M. (2019). Anaerobic digestion. Water Environment Research, 91(10), 1253–1271. https://doi.org/10.1002/wer.1219

Lee, C., Kim, S., Park, M. H., Lee, Y. S., Lee, C., Lee, S., Yang, J., & Kim, J. Y. (2022). Valorization of petroleum refinery oil sludges via anaerobic co-digestion with food waste and swine manure. Journal of Environmental Management, 307, 114562. https://doi.org/10.1016/j.jenvman.2022.114562

Liu, Y., Zong, Y., Xie, T., Song, H., & Zhang, J. (2022). Anaerobic Co-Digestion with Food Waste: A Possible Alternative to Overcome the Energy Deficit of Sludge Thermal Pretreatment. ACS Omega, 7(43), 38496–38504. https://doi.org/10.1021/acsomega.2c03700

Mahmoud, A., Zaghloul, M. S., Hamza, R. A., & Elbeshbishy, E. (2023). Comparing VFA Composition, Biomethane Potential, and Methane Production Kinetics of Different Substrates for Anaerobic Fermentation and Digestion. Fermentation, 9(2), 138. https://doi.org/10.3390/fermentation9020138

Mhlanga, P., Marenya, M. O., Tavengwa, N. T., & Tinarwo, D. (2023). Anaerobic co-digestion of canteen food waste and cow dung. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(4), 11341–11348. https://doi.org/10.1080/15567036.2023.2257149

Morales-Polo, C., Cledera-Castro, M. del M., & Soria, B. Y. M. (2019). Biogas production from vegetable and fruit markets waste-compositional and batch characterizations. Sustainability, 11, 6790. https://doi.org/10.3390/su11236790

Neri, A., Bernardi, B., Zimbalatti, G., & Benalia, S. (2023). An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production. Energies, 16(19), 6851. https://doi.org/10.3390/en16196851

Orangun, A., Kaur, H., & Kommalapati, R. R. (2021). Batch anaerobic co-digestion and biochemical methane potential analysis of goat manure and food waste. Energies, 14(7), 1952. https://doi.org/10.3390/en14071952

Osei-Owusu, B. A., Arthur, R., Baidoo, M. F., Oduro-Kwarteng, S., & Amenaghawon, A. N. (2024). Anaerobic co-digestion of human excreta, food leftovers and kitchen residue: 1 ternary mixture design, synergistic effects and RSM approach. Heliyon, 10(2), e24080. https://doi.org/10.1016/j.heliyon.2024.e24080

Pacheco, L. A., Tamayo-Peña, J., Moraes, B. de S., & Franco, T. T. (2022). Bioenergy, Electricity, Biogas Production, and Emission Reduction Using the Anaerobic Digestion of Organic Municipal Solid Waste in Campinas, One of the Largest Brazilian Cities. Processes, 10(12), 2662. https://doi.org/10.3390/pr10122662

Parra-Orobio, B. A., Donoso-Bravo, A., & Torres-Lozada, P. (2022). Pre-dimensioning of Small-Scale Anaerobic Reactors of Food Waste Through Biochemical Methane Potential Assays and Kinetic Models. Bioenergy Research, 15(1), 573–588. https://doi.org/10.1007/s12155-021-10291-3

Pilarska, A. A., Kulupa, T., Kubiak, A., Wolna-maruwka, A., Pilarski, K., & Niewiadomska, A. (2023). Anaerobic Digestion of Food Waste — A Short Review. Energies, 16(15), 5742. https://doi.org/10.3390/en16155742.

Rakić, N., Šušteršič, V., Gordić, D., Jovičić, N., Bošković, G., & Bogdanović, I. (2024). Characteristics of Biogas Production and Synergistic Effect of Primary Sludge and Food Waste Co-Digestion. Bioenergy Research, 17(1), 646–659. https://doi.org/10.1007/s12155-023-10620-8

Regueira-Marcos, L., García-Depraect, O., & Muñoz, R. (2023). Elucidating the role of pH and total solids content in the co-production of biohydrogen and carboxylic acids from food waste via lactate-driven dark fermentation. Fuel, 338, 127238. https://doi.org/10.1016/j.fuel.2022.127238

Sarker, A., Ahmmed, R., Ahsan, S. M., Rana, J., Ghosh, M. K., & Nandi, R. (2024). A comprehensive review of food waste valorization for the sustainable management of global food waste. Sustainable Food Technology, 2(1), 48–69. https://doi.org/10.1039/d3fb00156c

Saucedo, S. L., & Lau, A. (2024). Anaerobic Digestion of Food Waste with the Addition of Biochar Derived from Microwave Catalytic Pyrolysis of Solid Digestate. Sustainability, 16(18), 7997. https://doi.org/10.3390/su16187997

Sinan Akturk, A., & Demirer, G. N. (2020). Improved food waste stabilization and valorization by anaerobic digestion through supplementation of conductive materials and trace elements. Sustainability, 12, 5222. https://doi.org/10.3390/su12125222

Sulaiman, S. M., & Seswoya, R. (2021). The Performance Evaluation on Co-Digestion of Domestic Sewage Sludge and Food Waste for Methane Yield and Kinetics Analysis. International Journal of Integrated Engineering, 13(3), 28–36. https://doi.org/10.30880/ijie.2021.13.03.004

Świechowski, K., Matyjewicz, B., Telega, P., & Białowiec, A. (2022). The Influence of Low-Temperature Food Waste Biochars on Anaerobic Digestion of Food Waste. Materials, 15(3), 945. https://doi.org/10.3390/ma15030945

Szilágyi, Á., Bodor, A., Tolvai, N., Kovács, K. L., Bodai, L., Wirth, R., Bagi, Z., Szepesi, Á., Markó, V., Kakuk, B., Bounedjoum, N., & Rákhely, G. (2021). A comparative analysis of biogas production from tomato bio-waste in mesophilic batch and continuous anaerobic digestion systems. PLoS ONE, 16(3), e0248654. https://doi.org/10.1371/journal.pone.0248654

Toufexis, C., Makris, D., Vlachokostas, C., Michailidou, A. V, Mertzanakis, C., & Vachtsiavanou, A. (2024). Bridging the Gap between Biowaste and Biomethane Production : A Systematic Review Meta-Analysis Methodological Approach. Sustainability, 16(15), 6433. https://doi.org/10.3390/su16156433

Unpaprom, Y., Pimpimol, T., Whangchai, K., & Ramaraj, R. (2021). Sustainability assessment of water hyacinth with swine dung for biogas production, methane enhancement, and biofertilizer. Biomass Conversion and Biorefinery, 11(3), 849–860. https://doi.org/10.1007/s13399-020-00850-7

Usman, M., Tian, J., Lee, E., Aamir, M., Dulanja, P., Sik, Y., Wah, Y., & Ali, M. (2021). Current status of biogas upgrading for direct biomethane use : A review. Renewable and Sustainable Energy Reviews, 149(3), 111343. https://doi.org/10.1016/j.rser.2021.111343

Xue, S., Zhao, N., Song, J., & Wang, X. (2019). Interactive effects of chemical composition of food waste during anaerobic co-digestion under thermophilic temperature. Sustainability, 11(10), 2933. https://doi.org/10.3390/su11102933

Zainal, A., Harun, R., & Idrus, S. (2022). Performance Monitoring of Anaerobic Digestion at Various Organic Loading Rates of Commercial Malaysian Food Waste. Frontiers in Bioengineering and Biotechnology, 10, 775676. https://doi.org/10.3389/fbioe.2022.775676

Zara, S., Rihani, R., Blel, W., & Bentahar, F. (2020). Anaerobic co-digestion of dairy raw by-products and Ulva sp. macroalgae: Effect of organic and inorganic additives. Comptes Rendus Chimie, 24(S1), 23-37. https://doi.org/10.5802/CRCHIM.74

Zhang, Y., Kusch-Brandt, S., Heaven, S., & Banks, C. J. (2020). Effect of pasteurisation on methane yield from food waste and other substrates in anaerobic digestion. Processes, 8(11), 1351. https://doi.org/10.3390/pr8111351

Descargas

Publicado

2025-02-17

Cómo citar

Elizondo-Luévano, J. H. ., Díaz-Castro, D. E. ., Ríos-Velázquez, A. ., Ochoa-Sánchez, E. ., Castellanos-Vega, X., Villalobos-Constantino, M. F. ., Castro-Cepeda, D. A., & Aguirre-Cavazos, D. E. (2025). Valorización de residuos de comida mediante potencial bioquímico de metano. Agroindustrial Science, 15(1), 19-31. https://doi.org/10.17268/agroind.sci.2025.01.02

Número

Sección

Artículos de investigación