Development of a fortifying grain similar to rice (Oriza sativa) enriched with anchovy peptides (Engraulis ringens)

Autores/as

DOI:

https://doi.org/10.17268/agroind.sci.2025.01.01

Palabras clave:

Fortifying grain, fish protein extrusion, enzymatic hydrolysis

Resumen

The aim of this study was to develop a rice-like fortifying grain enriched with anchovy (Engraulis ringens) peptides obtained through extrusion for use as a commercial rice fortifier. The study utilized arrocillo, a by-product of rice processing (Oryza sativa), mixed with anchovy peptides in powdered form obtained by enzymatic hydrolysis. The fortifying grain were optimized using response surface methodology to maximize protein content and degree of similarity to rice while minimizing mass loss during cooking. The optimal formulation consisted of 16.19% hydrolyzed anchovy protein concentrate, 0.19% additive (SIN 471), and 83.64% broken rice flour. The resulting fortifying grain demonstrated a protein content of 18.77%, a similarity score of 6.12 on a scale of 1 to 9 relative to rice, and a cooking mass loss of 8.22%. Industrial scale-up tests validated these results, demonstrating that the developed grain is an ideal rice fortifier due to its high biological value protein content, low cost compared to other animal protein sources, high similarity to rice, and acceptable cooking loss.

Citas

AACC (1999). AACC Method 66-50. Pasta and Noodle Cooking Quality- Firmness. Method Cooking loss.

Abuine, R., Rathnayake, A. U., & Byun, H. G. (2019). Biological activity of peptides purified from fish skin hydrolysates. Fisheries and aquatic sciences, 22(1), 1-14. https://doi.org/10.1186/s41240-019-0125-4

AOAC (2019). Official Methods of Analysis. Method 942.05: Ash of Animal Feed, 21st Edition, Gaithersburg, Maryland, USA.

AOAC (2012). Official Methods of Analysis, Method:Free Fatty Acids. Official Journal of the European Communities 19.9.98, Gaithersburg, Maryland, USA.

AOAC (2016). Official Methods of Analysis, Method: Heavy Metals in Food. 21st Edition, Gaithersburg, Maryland, USA.

AOAC (2019). Official Methods of Analysis. Method 975.08 Fluorine in Animal Feed, 21st Edition, Gaithersburg, Maryland, USA.

AOAC (2019). Official Methods of Analysis. Method: 937.09 Salt (Chlorine as Sodium Chloride) in Seafood. Volumetric Method. Gaithersburg, Maryland, USA.

AOAC (1999) 18th. Ed. Method: 971.09-1973 Pepsin Digestibility of Animal Protein Feeds.

Autoridad Nacional de Sanidad e Inocuidad Pesquera y Acuícola- SANIPES (2016), Manual de Indicadores Sanitarios y de Inocuidad de Productos de la Pesca y la Acuicultura de Destino Nacional y de Exportación, aprobado mediante RDE N° 057-2016- SANIPES-DE, Perú.

Azizi Khesal, M., Sharifan, A., Hoseini, E., & Ghavami, A. (2020). Optimization of enzymatic hydrolysis conditions of Caspian kutum (Rutilus frisii kutum) ˮ by-product for production of bioactive peptides with antioxidative properties. International Journal of Peptide Research and Therapeutics, 26, 1829-1838. https://doi.org/10.1007/s10989-019-09981-6

Baez-Suarez, A. J., Ospina-de-Barreneche, N., & Zapata-Montoya, J. E. (2016). Efecto de temperatura, pH, concentración de sustrato y tipo de enzima en la hidrólisis enzimática de vísceras de tilapia roja (Oreochromis spp.). Información tecnológica, 27(6), 63-76. http://dx.doi.org/10.4067/S0718-07642016000600007 Budijanto, S., & Yuliana, N. D. (2015). Development of rice analog as a food diversification vehicle in Indonesia. Journal of Developments in Sustainable Agriculture, 10(1), 7-14. https://doi.org/10.11178/jdsa.10.7

Cupp-Enyard, C. (2008). Sigma's non-specific protease activity assay-casein as a substrate. JoVE (Journal of Visualized Experiments), 19, e899. https://doi.org/10.3791/899

Fatima, A., Singh, P., Kumar, V., Singh, R., & Rustagi, S. (2024).Exploring the significance of protein concentrate: A review on sources, extraction methods, and applications. J. Food Chemistry Advances, 5, 100771. https://doi.org/10.1016/j.focha.2024.100771

Ganachari, A., Nidoni, U., Hiregoudar, S., Ramappa, K., Naik, N., Vanishree, S., & Mathad, P. (2023) Development of rice analogues using by-products of rice and dhal mills. J. Food Sci. Technol., 59(8), 3150-3157. https://doi.org/10.1007/s13197-022-05405-4

Guo, Y., Michael, N., Fonseca Madrigal, J., Sosa Aguirre, C., & Jauregi, P. (2019). Protein hydrolysate from Pterygoplichthys disjunctivus, armoured catfish, with high antioxidant activity. Molecules, 24(8), 1628. https://doi.org/10.3390/molecules24081628

Haotian, C., Lei, T., Yu, L., Di, S., Qingbao, M., Zhongjie, Y., & Wei, J. (2024). Effect of different pretreatments on the hydrolysis efficiency and flavor of squid viscera (Dosidicus gigas), International Journal of Gastronomy and Food Science, 36, 100919. https://doi.org/10.1016/j.ijgfs.2024.100919.

Hilario, V., Benavides, H., Manayay, R., Romero, G., Mejía, D., Trejo, J., Ruiz, F., Javier, P., & Rodriguez, A. (2024). Situación de la población peruana 2024 una mirada de la diversidad étnica. Instituto Nacional de Estadística e Informática-INEI- Peru.

Hitchins, A., Jinneman, K., & Chen, Y. (2022). Bacteriological Analytical Manual (BAM). Chapter 10: Detection of Listeria monocytogenes in Foods and Environmental Samples, and Enumeration of Listeria monocytogenes in Foods. U.S. J. Food & Drug Administratión- FDA. Honrado, A., Ardila, P., Leciñena, P., Beltrán, J. A., & Calanche, J. B. (2023). Transforming ‘Bonito del Norte’ Tuna By-Products into Functional Ingredients for Nutritional Enhancement of Cereal-Based Foods. J. Foods, 12(24), 4437. https://doi.org/10.3390/foods12244437

Hoseney, R. C. (1991). Principios de Ciencia y Tecnología de los Cereales. Acribia. p. 269-274. ISBN:842000703X, 9788420007038.

Huai, X., Hou, Y., Zhang, J., Zhang, X., & Sang, Y. (2024). Structural characterization and enzymatic hydrolysis of tilapia skin and scale gelatin: bioactive properties and peptide profiling of hydrolysates. https://ssrn.com/abstract=4908985

ICMSF. (2000). Método de Recuento de Enterobacterias, Levaduras y Mohos por siembra en placa en todo el medio. Acribia, 2da. Ed. Pág. Pág. 149-150-166-167.

ISO 13903 (2019). Animal feeding stuffs — Determination of amino acids content.

ISO 6579-1 (2020). Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of SalmonellaPart 1: Detection of Salmonella spp.

ISP (2020). ISP - 021. Determinación de la densidad aparente y compacta en harinas de productos hidrobiológicos- Instituto de Salud Pública de Chile.

IRAM (1985). Norma para Productos de la Industria Pesquera. Método de determinación de bases volátiles por la técnica de Lücke y Geidel- Instituto Argentino de Normalización y Certificación.

Kari, N., Ahmad, F., & Ayub, M. (2022). Proximate composition, amino acid composition and food product application of anchovy: a review. J. food Research, 6(4), 16–29. https://doi.org/10.26656/fr.2017.6(4).419

Kakko, T., Damerau, A., Nisov, A., Puganen, A., Tuomasjukka, S., Honkapää, K., Tarvainen, M., & Yang, B. (2022). Quality of protein isolates and hydrolysates from baltic herring (Clupea harengus membras) and roach (Rutilus rutilus) produced by ph-shift processes and enzymatic hydrolysis. Foods, 11(2), 230. https://doi.org/10.3390/foods11020230

Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 40(1), 43-81. https://doi.org/10.1080/10408690091189266

Latham, M. (2002). Human Nutrition in the Developing World. Food and Agriculture Organization of the United Nations - FAO Series: Food and Nutrition No. 29. Chap. 26. ISBN 92-5-303818-7.

León, M., & Kung, M. (2021). Prospective study of the anchovy value chain for direct human consumption - National Program for Innovation in Fisheries and Aquaculture - PNIPA. National Library of Peru No. 202107656.

Lee, J-S., Choi, I., & Han, J. (2022). Construction of rice protein-based meat analogues by extruding process: Effect of substitution of soy protein with rice protein on dynamic energy, appearance, physicochemical, and textural properties of meat analogues. Food Research International, 161, 111840. https://doi.org/10.1016/j.foodres.2022.111840

Lima, K. O., da Rocha, M., Alemán, A., López-Caballero, M. E., Tovar, C. A., Gómez-Guillén, M. C., ... & Prentice, C. (2021). Yogurt fortification by the addition of microencapsulated stripped weakfish (Cynoscion guatucupa) protein hydrolysate. Antioxidants, 10(10), 1567. https://doi.org/10.3390/antiox10101567

Lin, M. Z., & Chen, B. H. (2024). An Improved Production Method of Bioactive Peptides from Sturgeon Fish Cartilage. J. Food Bioprocess Technol. https://doi.org/10.1007/s11947-024-03581-z Majluf, P., De la Puente, S., & Christensen, V. (2017). The little fish that can feed the world. Fish and fisheries, 18(4), 772-777. https://doi.org/10.1111/faf.12206

Ministerio de Desarrollo Agrario y Riego - MIDAGRI (2021). Análisis de mercado 2016-2020 Arroz. Unidad de inteligencia comercial. Sierra y Selva Exportadora. Ministerio de Desarrollo Agrario y Riego- Perú. Informes y publicaciones. Agromercado.

Ministerio de Desarrollo Agrario y Riego - MIDAGRI (2024). Catálogo virtual de productos agropecuarios. Categoría productores de carne. Lima – Perú.

Ministerio de Salud del Perú - MINSA (2008). Norma sanitaria que establece los criterios microbiológicos de calidad e inocuidad para alimentos y bebidas de consumo humano. R.M. N°591-2008-MINSA.

Ministerio de Producción - PRODUCE (2024). Anuario Estaditico Pesquero y Acuicola 2023. Oficina General de Evaluación de Impacto y Estudios Económicos - Peru.

Mohidem, N., Hashim, N., Shamsudin, R., & Che Man, H. (2022).Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content. Agriculture, 12, 741. https://doi.org/10.3390/agriculture12060741

Mohanty, U., Majumdar, R. K., Mohanty, B., Mehta, N. K., & Parhi, J. (2021). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysates from visceral waste of Labeo rohita. Journal of Food Science and Technology, 58, 4349-4358. https://doi.org/10.1007/s13197-020-04915-3

NCh 2637. (2021). Productos hidrobiológicos - Determinación de histaminas y otras aminas biógenas - Método HPLC con detector UV. Chile: Instituto Nacional de Normalización. Noviasari, S., Widara, S. S., & Budijanto, S. (2017). Analogue rice as the vehicle of public nutrition diversity. Jurnal Kesehatan Masyarakat, 13(1), 18-27. https://doi.org/10.15294/kemas.v13i1.8284

Nielsen, P., Petersen, D., & Dambmann, C. (2006). Improved method for determining food protein degree of hydrolysis. J Food Science, 66(5), 642-646. https://doi.org/10.1111/j.1365-2621.2001.tb04614.x

NTP 204.035(2023). Pescados, mariscos y productos derivados. Harina de pescado. Clasificación y requisitos. 2da Edición- Instituto Nacional de la Calidad – Perú.

NTP 204.029 (2020). Harina de pescado. Determinación del tamaño de partícula. Tamizado manual- Instituto Nacional de la Calidad – Perú.

NTP 205.005 (2018). Cereales and legms. Determinación de proteínas totales (método Kjeldahl)- Instituto Nacional de la Calidad – Perú

NTP ISO 5983 (2018). Pescados, mariscos y productos derivados. Determinación del contenido de nitrógeno y cálculos del contenido de proteína cruda- Instituto Nacional de la Calidad – Perú.

NTP 204.033 (2010). Harina de pescado. Determinación de extracto hexánico (Método de rutina) y extracto de éter dietílico- Instituto Nacional de la Calidad – Perú.

NTP-ISO 6496: (2022). Alimentos para animales. Determinación del contenido de humedad- Instituto Nacional de la Calidad – Perú.

NTP 205.011 (2023). ARROZ. Arroz elaborado. Requisitos 4ta Edición- Instituto Nacional de la Calidad – Perú.

OCDE, Comisión Económica para América Latina y el Caribe, CAF Banco de Desarrollo de América Latina y Comisión Europea (2023), Perspectivas económicas de América Latina 2023: Invirtiendo para un desarrollo sostenible, OECD Publishing, París. https://doi.org/10.1787/5cf30f87-es.

Pandia, S., Solari, A., Albrecht-Ruiz, M., & & Salas, A. (2013). Enzymatic Hydrolysis of Anchovy and Whole Anchovy Waste at Pilot Level and Characterization of its Products. Research Bulletin of the Technological Institute of Production, 11, 21-28.

Perea, R., Garcés, C., Morales, B. Jiménez, C., Hoyos, C. & Vivas, Q (2021). Digestibility of enzymatic hydrolysates of animal viscera in Piaractus brachypomus, Cuvier 1818. Biotecnología En El Sector Agropecuario Y Agroindustrial, 20(1), 54–67. https://doi.org/10.18684/rbsaa.v20.n1.2022.1606

Ramírez-Navas, (2012). Sensory analysis: consumer-oriented tests. ReCiTeIA Journal, 12, 83-102.

Reyes-Garcia, M., Gomez-Sanchez, I., & Espinoza-Barrientos, C. (2017). Peruvian food composition tables. Lima, Peru: National Institute of Health-INS- CENAN.

Rivero-Pino, F., Espejo-Carpio, J., & Guadix, E. M. (2020). Evaluation of the bioactive potential of foods fortified with fish protein hydrolysates. Food Research International, 137, 109572. https://doi.org/10.1016/j.foodres.2020.109572

Roldán A., Omote-Sibina, J., & Molleda O.(2021). Preparation of a hydrolyzed anchovy (Engraulis ringens) protein powder. Scientific Annals, 82(2), 251-261. https://doi.org/10.21704/ac.v82i2.1787

Saleem, A., Hussain, A., Chaudhary, A., Ahmad, Q., Iqtedar, M., & Javid, A. &. (2020). Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Conversion and Biorefinery, 12, 1513–1524. https://doi.org/10.1007/s13399-020-01117-x

Saltmarsh, M. (2020). Chapter 1: Food Aditives and why they are used. En Saltmarsh´s Essential Guide to Food Aditives (págs. 1-9). https://doi.org/10.1039/9781839161063

Senadheera, T. D. (2021). Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa). Food Prod Process and Nutr, 3, 3. https://doi.org/10.1186/s43014-020-00049-3

Sifuentes-Penagos, G., Leon, S., & Castillo, A. (2018). Hydrolysis of whole anchovy (Engraulis ringens) proteins by the action of the enzyme ProtamexTM. Scientia Agropecuaria, 9(1), 93-102. https://doi.org/10.17268/sci.agropecu.2018.01.10

Song, P., Zhang, X., Wang, S., Xu, W., Wang, F., Fu, R., & Wei, F. (2023). Microbial proteases and their applications. J Frontiers in Microbiology, 14, 1236368. https://doi.org/10.3389/fmicb.2023.1236368

Tapia, M., Marimón, S., & Salazar, N. (2023). Development of Extruded Snacks with Protein Hydrolysed from Jumbo Squid (Dosidicus gigas) by-Product and Cañihua. Biology and Life Sciences Forum, 25, 4. https://doi.org/10.3390/blsf2023025004

U.S. EPA (1994). “Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry,” Revision 4.4. Cincinnati, OH.

Valerio, J., Pandia, S., Gallo, M., & Pizardi, C. (2023). Optimization of the enzymatic hydrolysis of anchovy (Engraulis ringens) to minimize bitterness. Technological Information, 34(1), 31-46. https://doi.org/10.4067/S0718-07642023000100031

Valenzuela-Lagarda, J. L., Pacheco-Aguilar, R., Gutiérrez-Dorado, R., Mendoza, J. L., López-Valenzuela, J. Á., Mazorra-Manzano, M. Á., & Muy-Rangel, M. D. (2021). Interaction of squid (Dosidicus giga) mantle protein with a mixtures of potato and corn starch in an extruded snack, as characterized by FTIR and DSC. Molecules, 26(7), 2103. https://doi.org/10.3390/molecules26072103

Wenhan, Y. Y., Zheng, Y., …, Fang, H., Tian, J., & Ye, X. (2019). Effect of extrusion processing on the microstructure and in vitro digestibility of broken rice. LWT - Food Science and Technology, 119, 108835. https://doi.org/10.1016/j.lwt.2019.108835

Wu, L. (2021). Analysis of food Additives. Innovative Food Analysis (pp.157-180). Chapter 7. Academic Press Editorial. https://doi.org/10.1016/B978-0-12-819493-5.00007-8

You, L., Regenstein, J., & Hai, R. (2010). Optimization of hydrolysis conditions for the production of antioxidant peptides from fish gelatin using response surface methodology. J. Food Sci., 75(6), C582-C587. https://doi.org/10.1111/j.1750-3841.2010.01707.x

Descargas

Publicado

2025-02-17

Cómo citar

Espinoza Mendoza, D., & Castillo, A. (2025). Development of a fortifying grain similar to rice (Oriza sativa) enriched with anchovy peptides (Engraulis ringens). Agroindustrial Science, 15(1), 7-18. https://doi.org/10.17268/agroind.sci.2025.01.01

Número

Sección

Artículos de investigación