La inclusión de recursos alimenticios alternativos en la dieta de tilapia nilótica (Oreochromis niloticus) mejora su perfil de ácidos grasos

Autores/as

  • Julio Alejandro Franco-Ortega Fundación Universitaria Agraria de Colombia UNIAGRARIA, Facultad de Ciencias Administrativas y Contables. Bogotá, Colombia. https://orcid.org/0000-0002-3836-8535
  • Liliana Lucía Betancourt-Lopez Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Producción Animal, Colombia. https://orcid.org/0000-0003-0172-7896
  • Adriana Patricia Muñoz-Ramirez Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Producción Animal, Colombia. https://orcid.org/0000-0001-6706-7363
  • Gustavo Alfaro Wills-Franco Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Producción Animal, Colombia. https://orcid.org/0000-0003-1088-0817

DOI:

https://doi.org/10.17268/agroind.sci.2024.03.06

Palabras clave:

silage viscera, chia seed, flax seed, omega-3, diet functional

Resumen

El enriquecimiento del filete de tilapia con ácidos grasos (AG) omega-3 (n-3) es una alternativa para mejorar la competitividad de los productos acuícolas. Se evaluaron dietas extruidas isoenergéticas e isoprotéicas con inclusión de 0%, 5%, 10% y 15% de semilla de chía (SC) y de Lino (SL); 0%, 3%, 5%, y 8% de ensilaje de vísceras de cachama (EVC) y 0%, 4%, 7% y 10% de ensilaje de vísceras de trucha (EVT) como fuentes alternativas de lípidos y un tratamiento control (C) con 100% de ingredientes comunes. Se determinó el desempeño productivo y el perfil de AG en el filete de tilapia. El perfil de AG tanto en dietas como filetes se determinó por cromatografía de gases. Las materias primas alternativas permitieron incrementar el contenido de AG n-3 (p < 0,05) en un periodo de 48 días. Con un 9% de inclusión de SC se maximizó la deposición de AG n-3. Con los demás recursos alimenticios se encontró una respuesta lineal en la deposición de AG n-3. El contenido de AG n-3 en el filete se maximizó con 15% de SL, 10% de EVT y 8% de EVC (p < 0,05). Las fuentes vegetales superaron el contenido de AG n-3 respecto a las fuentes animales. La relación entre AG n-6:n-3 se redujo de 5,9 para el control hasta 4,4 con la inclusión de SC (p < 0,05). Se concluye que la inclusión de recursos alimenticios alternativos en la dieta de tilapia Nilótica es viable y permite una mayor deposición de ácidos grasos n-3.

Citas

Abd Elshafy, M. B., Abd EL-Monem, A. I. M., Khattab, I. M., Fadl, S. E., & Abou Khadiga, G. (2023). Nutritional impact of nano zeolite, probiotic, and fatty acids as feed additives on health status of Nile tilapia (Oreochromis niloticus). Scientific Reports, 13(1), 22740. https://doi.org/10.1038/s41598-023-50034-2

Alagawany, M., Elnesr, S. S., Farag, M. R., El-Hack, A., Mohamed, E., Khafaga, A. F., & Dhama, K. (2019). Omega-3 and omega-6 fatty acids in poultry nutrition: Effect on production performance and health. Animals, 9(8), 573. https://doi.org/10.3390/ani9080573

Ali, M. M., Elashry, M. A., Mohammady, E. Y., & Soaudy, M. S. (2023). Dietary alpha‐monolaurin for Nile tilapia (Oreochromis niloticus): Stimulatory effects on growth, immunohematological indices, and immune‐related gene expressions. Aquaculture Research, 2023(1), 3155447. https://doi.org/10.1155/2023/3155447

AOAC Official Method 2002. Amylase-Treated Neutral Detergent Fiber in Feeds. En: AOAC Official Methods of Analysis. 15 ed. Arlington, VA: Assoc Offic Anal Chem 2002. / Mertens DR. Gravimetric Determination of Amylase-treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J AOAC Int 2002; 85:1217-1240

Avallone, R., Vitale, G., & Bertolotti, M. (2019). Omega-3 fatty acids and neurodegenerative diseases: New evidence in clinical trials. International Journal of Molecular Sciences, 20(17), 4256. https://doi.org/10.1016/j.psyneuen.2017.10.005

Barriviera VR, Tsujii KM, dos Santos LD, Furuya LB, Panaczevicz PA, Miranda JA, ... y Furuya WM. 2021. Substitution of soybean oil with linseed oil on growth performance, fatty acid profile and texture attributes in large Nile tilapia, Oreochromis niloticus reared under cold suboptimal temperature. Aquaculture Research, 52 (11): 5136-5145. https://doi.org/10.1111/are.15381

Betancourt, L., Díaz, G. J., Aguilar, X., & Ríos, J. (2005). Effect of ensiled trout (Oncorhynchus mykiss) intestines on productive traits of broiler chickens and the content of omega-3 fatty acids in liver, thighs, and breast. Livestock Research for Rural Development, 17(9). http://www.lrrd.org/lrrd17/9/beta17106.htm

Calder, P. C. (2015). Functional roles of fatty acids and their effects on human health. Journal of Parenteral and Enteral Nutrition, 39(Suppl. 1), 18S-32S. https://doi.org/10.1177/0148607115595980

Calder, P. C., Campoy, C., Eilander, A., Fleith, M., Forsyth, S., Larsson, P. O., & Mensink, R. P. (2019). A systematic review of the effects of increasing arachidonic acid intake on PUFA status, metabolism, and health-related outcomes in humans. British Journal of Nutrition, 121(11), 1201-1214. https://doi.org/10.1017/S0007114519000692

Carrera-Quintana, S. C., Gentile, P., & Girón-Hernández, J. (2022). An overview on the aquaculture development in Colombia: Current status, opportunities, and challenges. Aquaculture, 560, 738583. https://doi.org/10.1016/j.aquaculture.2022.738583

Coates, W., & Ayerza, R. (2009). Chia (Salvia hispanica L.) seed as an n-3 fatty acid source for finishing pigs: Effects on fatty acid composition and fat stability of the meat and internal fat, growth performance, and meat sensory characteristics. Journal of Animal Science, 87(11), 3798-3804. https://doi.org/10.2527/jas.2009-1987

Coorey, R., Novinda, A., Williams, H., & Jayasena, V. (2015). Omega‐3 fatty acid profile of eggs from laying hens fed diets supplemented with chia, fish oil, and flaxseed. Journal of Food Science, 80(1), S180-S187. https://doi.org/10.1111/1750-3841.12735

Cruz-Casallas, N. E., Marciales-Caro, L. J., Díaz-Olarte, J. J., Murillo-Pacheco, R., Medina-Robles, V. M., & Cruz-Casallas, P. E. (2010). Desempeño productivo del yaque (Leiarius marmoratus Gill, 1870) bajo diferentes densidades de siembra en estanques en tierra. Revista Colombiana de Ciencias Pecuarias, 23(3), 325-335. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902010000300008&lng=en&tlng=es

Chetoui, I., Ghribi, F., Bejaoui, S., Hachana, S., El Cafsi, M., & Azaza, M. S. (2022). Incorporation of ω3 fatty acids in the diets of Nile tilapia juvenile (Oreochromis niloticus L.): Effects on growth performance, fatty acid composition, and tolerance to low temperature. Tropical Animal Health and Production, 54(6), 401. https://doi.org/10.1007/s11250-022-03394-2

De Souza, N. E., Matsushita, M., De Oliveira, C., Franco, M. R., & Visentainer, J. V. (2007). Manipulation of fatty acid composition of Nile tilapia (Oreochromis niloticus) fillets with flaxseed oil. Journal of the Science of Food and Agriculture, 87(9), 1677-1681. https://doi.org/10.1002/jsfa.2877

De Souza, N. E., Stevanato, F. B., Garcia, E. E., Visentainer, J. V., & Zara, R. F. (2008). Supplemental dietary flaxseed oil affects both neutral and phospholipid fatty acids in cultured tilapia. European Journal of Lipid Science and Technology, 110(7), 707-713. https://doi.org/10.1002/ejlt.200700245

Djuricic, I., & Calder, P. C. (2021). Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients, 13(7), 2421. https://doi.org/10.3390/nu13072421

Dos Santos, S. K., Schorer, M., Moura, G. D., Lanna, E. A., & Pedreira, M. M. (2019). Evaluation of growth and fatty acid profile of Nile tilapia (Oreochromis niloticus) fed with Schizochytrium sp. Aquaculture Research, 50(4), 1068-1074. https://doi.org/10.1111/are.13979

Drenjančević, I., & Pitha, J. (2022). Omega-3 polyunsaturated fatty acids—Vascular and cardiac effects on the cellular and molecular level (narrative review). International Journal of Molecular Sciences, 23(4), 2104. https://doi.org/10.3390/ijms23042104

Duarte, F. O., de Paula, F. G., Prado, C. S., dos Santos, R. R., Minafra-Rezende, C. S., Gebara, C., & Lage, M. E. (2021). Better fatty acids profile in fillets of Nile tilapia (Oreochromis niloticus) supplemented with fish oil. Aquaculture, 534, 736241. https://doi.org/10.1016/j.aquaculture.2020.736241

Elagizi, A., Lavie, C. J., O’Keefe, E., Marshall, K., O’Keefe, J. H., & Milani, R. V. (2021). An update on omega-3 polyunsaturated fatty acids and cardiovascular health. Nutrients, 13(1), 204. https://doi.org/10.3390/nu13010204

FAO. (2020). El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma. https://doi.org/10.4060/ca9229es

Fekete, K., Marosvölgyi, T., Jakobik, V., & Decsi, T. (2009). Methods of assessment of n–3 long-chain polyunsaturated fatty acid status in humans: A systematic review. The American Journal of Clinical Nutrition, 89(6), 2070S-2084S. https://doi.org/10.3945/ajcn.2009.27230I

Ferronato, G., & Prandini, A. (2020). Dietary supplementation of inorganic, organic, and fatty acids in pig: A review. Animals, 10(10), 1740. https://doi.org/10.3390/ani10101740

Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226(1), 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5

Freitas, R. D., & Campos, M. M. (2019). Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients, 11(5), 945. https://doi.org/10.3390/nu11050945

Fuentes, N. R., Kim, E., Fan, Y. Y., & Chapkin, R. S. (2018). Omega-3 fatty acids, membrane remodeling and cancer prevention. Molecular Aspects of Medicine, 64, 79-91. https://doi.org/10.1016/j.mam.2018.04.001

Goosen, N. J., de Wet, L. F., & Goergens, J. F. (2016). Rainbow trout silage as immune stimulant and feed ingredient in diets for Mozambique tilapia (Oreochromis mossambicus). Aquaculture Research, 47(1), 329-340. https://doi.org/10.1111/are.12497

García, J. C., Ojea, E. T., Treviño, L. J., & Fernández, S. S. (2017). Ácidos grasos omega-3 y depresión: Una revisión sistemática. Psiquiatría Biológica, 24(1), 10-17. https://doi.org/10.1016/j.psiq.2016.12.001

SAS Institute. (1990). GLM: General linear models.

Harris, W. S. (2018). The omega-6: Omega-3 ratio: A critical appraisal and possible successor. Prostaglandins, Leukotrienes and Essential Fatty Acids, 132, 34-40. https://doi.org/10.1016/j.plefa.2018.03.003

Huang, N., Wang, M., Peng, J., & Wei, H. (2021). Role of arachidonic acid-derived eicosanoids in intestinal innate immunity. Critical Reviews in Food Science and Nutrition, 61(14), 2399-2410. https://doi.org/10.1080/10408398.2020.1777932

Jamshidi, A. M., Amato, M., Ahmadi, A., Bochicchio, R., & Rossi, R. (2019). Chia (Salvia hispanica L.) as a novel forage and feed source: A review. Italian Journal of Agronomy, 14(1), 1-18. https://doi.org/10.4081/ija.2019.1297

Justi, K., Hayashi, C., Visentainer, J. V., de Souza, N. E., & Matsushita, M. (2003). The influence of feed supply time on the fatty acid profile of Nile tilapia (Oreochromis niloticus) fed on a diet enriched with n-3 fatty acids. Food Chemistry, 80, 489-493. https://doi.org/10.1016/S0308-8146(02)00317-5

Kowalska, A., Zakęś, Z., Jankowska, B., & Siwicki, A. (2012). Impact of diets with vegetable oils on the growth, histological structure of internal organs, biochemical blood parameters, and proximate composition of pikeperch (Sander lucioperca). Fish Physiology and Biochemistry, 38, 375-388. https://doi.org/10.1016/j.aquaculture.2010.01.028

Lange, K. W. (2020). Omega-3 fatty acids and mental health. Global Health Journal, 4(1), 18-30. https://doi.org/10.1016/j.glohj.2020.01.004

Layé, S., Nadjar, A., Joffre, C., & Bazinet, R. P. (2018). Anti-inflammatory effects of omega-3 fatty acids in the brain: Physiological mechanisms and relevance to pharmacology. Pharmacological Reviews, 70(1), 12-38. https://doi.org/10.1124/pr.117.014092

Liang, Z., Jiang, Z., Wu, S., Zhai, Y., You, S., & Xu, C. (2024). Exogenous fatty acids remodel the muscle fatty acids composition of the GIFT tilapia (Oreochromis niloticus). Aquaculture Research, 2024(1), 715178. https://doi.org/10.1155/2024/2715178

Maki, K. C., Eren, F., Cassens, M. E., Dicklin, M. R., & Davidson, M. H. (2018). ω-6 polyunsaturated fatty acids and cardiometabolic health: Current evidence, controversies, and research gaps. Advances in Nutrition, 9(6), 688-700. https://doi.org/10.1093/advances/nmy038

Muñoz-Peñuela, M., García-Ulloa, M., Fonseca-Madrigal, J., Medina-Godoy, S., Espinosa-Alonso, L. G., & Rodríguez-González, H. (2021). Influence of different concentrations of chia (Salvia hispanica) and flaxseed (Linum usitatissimum) meal on fillet fatty acid profile of Nile tilapia (Oreochromis niloticus). Latin American Journal of Aquatic Research, 49(4), 671-677. http://dx.doi.org/10.3856/vol49-issue4-fulltext-2644

Niot, I., Poirier, H., Tran, T. T. T., & Besnard, P. (2009). Intestinal absorption of long-chain fatty acids: Evidence and uncertainties. Progress in Lipid Research, 48(2), 101-115. https://doi.org/10.1016/j.plipres.2009.01.001

Opiyo, M. A., Muendo, P., Mbogo, K., Ngugi, C. C., Charo-Karisa, H., Orina, P., & Tocher, D. R. (2022). Inclusion of duckweed (Lemna minor) in the diet improves flesh omega-3 long-chain polyunsaturated fatty acid profiles but not the growth of farmed Nile tilapia (Oreochromis niloticus). Animal Feed Science and Technology, 292, 115442. https://doi.org/10.1016/j.anifeedsci.2022.115442

Parvez, M. S., Biswas, B., Debnath, S., Aktar, S., Rahman, S. M., & Ahsan, M. N. (2024). Zootechnical performance, protease activity and proximate composition of Nile tilapia fed diets containing fish silage produced from fish waste. Aquaculture Studies, 24(6). https://doi.org/10.4194/AQUAST1974

Sahena, F., Zaidul, I. S. M., Jinap, S., Saari, N., Jahurul, H. A., Abbas, K. A., & Norulaini, N. A. (2009). PUFAs in fish: Extraction, fractionation, importance in health. Comprehensive Reviews in Food Science and Food Safety, 9(2), 59-74. https://doi.org/10.1111/j.1541-4337.2009.00069.x

Sales-Campos, H., Reis de Souza, P., Crema Peghini, B., Santana da Silva, J., & Ribeiro Cardoso, C. (2013). An overview of the modulatory effects of oleic acid in health and disease. Mini Reviews in Medicinal Chemistry, 13(2), 201-210. https://doi.org/10.2174/138955713804805193

Shibabaw, T. (2021). Omega-3 polyunsaturated fatty acids: Anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Molecular and Cellular Biochemistry, 476(2), 993-1003. https://doi.org/10.1007/s11010-020-03965-7

Simopoulos, A. P. (2004). The traditional diet of Greece and cancer. European Journal of Cancer Prevention, 13(3), 219–230. http://www.jstor.org/stable/45051403

Simopoulos, A. P. (2020). Omega-6 and omega-3 fatty acids: Endocannabinoids, genetics and obesity. OCL, 27, 7. https://doi.org/10.1051/ocl/2019046Tallima, H., & El Ridi, R. (2018). Arachidonic acid: Physiological roles and potential health benefits—a review. Journal of Advanced Research, 11, 33-41. https://doi.org/10.1016/j.jare.2017.11.004

Teoh, C. Y., Turchini, G. M., & Wing-Keon, N. G. (2011). Genetically improved farmed Nile tilapia and red hybrid tilapia showed differences in fatty acid metabolism when fed diets with added fish oil or a vegetable oil blend. Aquaculture Nutrition, 17-1, 126-136. https://doi.org/10.1016/j.aquaculture.2010.12.018

Thesing, C. S., Bot, M., Milaneschi, Y., Giltay, E. J., & Penninx, B. W. (2018). Omega-3 and omega-6 fatty acid levels in depressive and anxiety disorders. Psychoneuroendocrinology, 87, 53-62. https://doi.org/10.1016/j.psyneuen.2017.10.005

Tonial, I. B., Stevanato, F. B., Matsuhita, M., De Souza, N. E., Furuya, W. M., & Visentainer, J. V. (2009). Optimization of flaxseed oil feeding time length in adult Nile tilapia (Oreochromis niloticus) as a function of muscle omega-3 fatty acids composition. Aquaculture Nutrition, 15, 564-568. https://doi.org/10.1111/j.1365-2095.2008.00623.x

Turchini, G. M., Francis, D. S., & De Silva, S. S. (2006). Fatty acid metabolism in the freshwater fish Murray cod (Maccullochella peelii peelii) deduced by the whole-body fatty acid balance method. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 144, 110–118. https://doi.org/10.1016/j.cbpb.2006.01.013

Visentainer, J. V., De Souza, N. E., Makoto, M., Hayashi, C., & Bueno, M. R. (2005). Influence of diets enriched with flaxseed oil on the α-linolenic, eicosapentaenoic and docosahexaenoic fatty acid in Nile tilapia (Oreochromis niloticus). Food Chemistry, 90, 557–560. https://doi.org/10.1016/j.foodchem.2004.05.016

Xie, D., Guan, J., Huang, X., Xu, C., Pan, Q., & Li, Y. (2022). Tilapia can be a beneficial n-3 LC-PUFA source due to its high biosynthetic capacity in the liver and intestine. Journal of Agricultural and Food Chemistry, 70(8), 2701-2711. https://doi.org/10.1021/acs.jafc.1c05755

Wangkahart, E., Bruneel, B., Wisetsri, T., Nontasan, S., Martin, S. A., & Chantiratikul, A. (2022). Interactive effects of dietary lipid and nutritional emulsifier supplementation on growth, chemical composition, immune response and lipid metabolism of juvenile Nile tilapia (Oreochromis niloticus). Aquaculture, 546, 737341. https://doi.org/10.1016/j.aquaculture.2021.737341

Young, K. (2009). Omega-6 (n-6) and omega-3 (n-3) fatty acids in tilapia and human health: A review. International Journal of Nutrition and Food Sciences, 60, 203-211. https://doi.org/10.1080/09637480903140503

Descargas

Publicado

2024-11-19

Cómo citar

Franco-Ortega, J. A., Betancourt-Lopez, L. L., Muñoz-Ramirez, A. P., & Wills-Franco, G. A. (2024). La inclusión de recursos alimenticios alternativos en la dieta de tilapia nilótica (Oreochromis niloticus) mejora su perfil de ácidos grasos. Agroindustrial Science, 14(3), 237-246. https://doi.org/10.17268/agroind.sci.2024.03.06

Número

Sección

Artículos de investigación

Artículos más leídos del mismo autor/a