Nematodes as bioindicators of the state of disturbance of edaphic ecosystems irrigated with natural and polluted water

Autores/as

  • Michael Niño de Guzman Tito Universidad Nacional de San Agustín de Arequipa
  • Guido Zumarán Martinez Universidad Nacional de San Agustín de Arequipa

DOI:

https://doi.org/10.17268/agroind.sci.2021.03.04

Palabras clave:

anthropic influence, soil quality, trophic index, trophic network.

Resumen

Proper soil assessment requires an understanding of the response of edaphic food webs. Therefore, in this study, the disturbance status of soils irrigated with natural and contaminated water was determined using edaphic nematofauna food webs. Preliminary sampling and analysis were performed to determine the number of subsamples for each type of soil (pasture, alfalfa crop, fig and willow) irrigated with natural and contaminated water, with the number of subsamples determined another sampling was performed, the samples were labeled and transported to the laboratory; with the data obtained, the NINJA program was used to calculate the food web percentages and food web indices. In soil ecosystems irrigated with natural water, there was a high percentage of omnivorous and predatory nematodes; and in soil ecosystems irrigated with contaminated water, there was a high percentage of bacteriovores and fungivores. The trophic network indices indicated that the edaphic ecosystems irrigated with natural water had little anthropic influence and therefore a greater number of healthy soils, and in the edaphic ecosystems irrigated with contaminated water there was a greater anthropic influence and therefore a greater number of disturbed soils. 

Citas

Bal, H. K., Acosta, N., Cheng, Z., Grewal, P. S., & Hoy, C. W. (2017). Effect of habitat and soil management on dispersal and distribution patterns of entomopathogenic nematodes. Applied Soil Ecology, 121, 48-59.

Coyne, D. L., Nicol, J. M., & Claudius-Cole, B. (2007). Practical plant nematology: a field and laboratory guide. SP-IPM Secretariat, International Institute of Tropical Agriculture (IITA), Cotonou, Benin.

Ezenne, G. I., Jupp, L., Mantel, S. K., & Tanner, J. L. (2019). Current and potential capabilities of UAS for crop water productivity in precision agriculture. Agricultural Water Management, 218, 158-164.

Fernando, A. L., Costa, J., Barbosa, B., Monti, A., & Rettenmaier, N. (2018). Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass and Bioenergy, 111, 174-186.

Fierro, P., Valdovinos, C., Arismendi, I., Díaz, G., Ruiz de Gamboa, M., & Arriagada, L. (2019). Assessment of anthropogenic threats to Chilean Mediterranean freshwater ecosystems: Literature review and expert opinions. Environmental Impact Assessment Review, 77, 114-121.

Fraschetti, S., Guarnieri, G., Gambi, C., Bevilacqua, S., Terlizzi, A., & Danovaro, R. (2016). Impact of offshore gas platforms on the structural and functional biodiversity of nematodes. Marine Environmental Research, 115, 56-64.

Grzelak, K., Tamborski, J., Kotwicki, L., & Bokuniewicz, H. (2018). Ecostructuring of marine nematode communities by submarine groundwater discharge. Marine Environmental Research, 136, 106-119.

Gu, Y. -J., Han, C. -L., Fan, J. -W., Shi, X. -P., Kong, M., Siddique, K.H.M., et al. (2018). Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crops Research, 215, 94-103.

Guerrero, R. (2017). Manual de nematodos fitoparásitos identificados de especies cuarentanarias. Agrocalidad. Ecuador: Quito 136: 1-42.

Hernández-Ochandia, D., Rodríguez-Hernández, M. G., Miranda-Cabrera, I., & Holgado R. (2016). Métodos para la extracción de nematodos presentes en suelos del agrupamiento Ferralítico en Cuba. Revista Protección Vegetal, 31(3), 228-232.

Jiang, Y., Sun, B., Li, H., Liu, M., Chen, L., & Zhou, S. (2015). Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil. Soil Biology and Biochemistry, 88, 101-109.

Kaya, Ç. I., Yazar, A., & Sezen, S. M. (2015). SALTMED Model Performance on Simulation of Soil Moisture and Crop Yield for Quinoa Irrigated Using Different Irrigation Systems, Irrigation Strategies and Water Qualities in Turkey. Agriculture and Agricultural Science Procedia, 4, 108-118.

Landi, S., Papini, R., d’Errico, G., Brandi, G., Rocchini, A., Roversi, P.F., Bazzoffi, P., & Mocali, S. (2018). Effect of different set-aside management systems on soil nematode community and soil fertility in North, Central and South Italy. Agriculture, Ecosystems and Environment, 261, 251-260.

McGraw, B. A., & Schlossberg, M. J. (2017). Fine-scale spatial analysis of soil moisture and entomopathogenic nematode distribution following release in wetting agent-treated turf. Applied Soil Ecology, 114, 52-61.

Piedra, R. (2015). Guía de muestreo de nematodos fitoparásitos en cultivos agrícolas. Instituto Nacional de Innovación y Transaparencia en Tecnología Agropecuaria.

Procter, D. L. C. (1990). Global overview of the functional roles of soil-living nematodes in terrestrial communities and ecosystem. Journal of Nematology, 22(1), 1-7.

Rosli, N., Leduc, D., Rowden, A. A., Probert, P. K., & Clark, M. R. (2018). Regional and sediment depth differences in nematode community structure greater than between habitats on the New Zealand margin: Implications for vulnerability to anthropogenic disturbance. Progress in Oceanography, 160, 26-52.

Sánchez-Moreno, S., & Talavera, M. (2013). Los nematodos como indicadores ambientales en agroecosistemas. Ecología y Medio Ambiente, 22, 50-55.

Sechi, V., De Goede, R. G. M., Rutgers, M., Brussaard, L., & Mulder, C. (2018). Functional diversity in nematode communities across terrestrial ecosystems. Basic and Applied Ecology, 30, 76-86.

Sieriebriennikov, B., Ferris, H., & de Goede, R. G. M. (2014). NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61, 90-93.

Simmons, B. L., Niles, R. K., & Wall, D. H. (2008). Distribution and abundance of alfalfa-field nematodes at various spatial scales. Applied Soil Ecology, 38, 211-222.

Song, D., Pan, K., Tariq, A., Sun, F., Li, Z., Sun, X., Zhang, L. et al. (2017). Large-scale patterns of distribution and diversity of terrestrial nematodes. Applied Soil Ecology, 114, 161-169.

Steel, H., & Ferris, H. (2016). Soil nematode assemblages indicate the potential for biological regulation of pest species. Acta Oecologica, 73, 87-96.

Trujillo, C. C. (2007). Impacto ambiental en el geosistema de las canteras de sillar de Añashuayco - Arequipa. Espacio y Desarrollo, 216, 207-216.

Yupanqui, M., & Bernabé, J. C. (2018). Grado de contaminación del río Chili por oligoelementos metálicos y su efecto en el cultivo de Illium cepa L. (cebolla) en el subsector de riego - Tiabaya. Campus, 23, 43-58.

Descargas

Publicado

2021-11-29

Cómo citar

de Guzman Tito, M. N., & Zumarán Martinez, G. (2021). Nematodes as bioindicators of the state of disturbance of edaphic ecosystems irrigated with natural and polluted water. Agroindustrial Science, 11(3), 275-279. https://doi.org/10.17268/agroind.sci.2021.03.04

Número

Sección

Artículos de investigación