Caracterización morfológica por microscopía electrónica de barrido de nanocelulosas de cáscara de sandía (Citrullus lanatus)

Autores/as

  • Diana García Escuela de Ingeniería de Industrias Alimentarias. Facultad de Ingeniería y Arquitectura. Universidad Peruana Unión. Carretera central km 19.5. Lima.
  • Javier S. Cordova-Ramos Escuela de Ciencia de los Alimentos. Universidad Nacional Mayor de San Marcos. Av. Universitaria /Calle Germán Amézaga 375, Lima
  • Silvia Pilco-Quesada Escuela de Ingeniería de Industrias Alimentarias. Facultad de Ingeniería y Arquitectura. Universidad Peruana Unión. Carretera central km 19.5. Lima
  • Jorge Jave Escuela de Ciencia de los Alimentos. Universidad Nacional Mayor de San Marcos. Av. Universitaria /Calle Germán Amézaga 375, Lima
  • Alfonso Ruiz Escuela de Ingeniería Agroindustrial. Universidad Nacional de Huancavelica. Av. Común Era. Acobamba

DOI:

https://doi.org/10.17268/agroind.sci.2021.02.03

Palabras clave:

nanocelulosa, celulosa, imágenes SEM, morfología, cáscara de sandía

Resumen

La cáscara de sandía (Citrullus lanatus) es un residuo agrícola abundante, disponible y muy poco utilizable. Los objetivos fueron aislar la nanocelulosa a partir de la corteza de sandía y obtener sus imágenes de morfología a través de microscopía electrónica de barrido (SEM). Primero, se realizó un tratamiento alcalino con hidróxido de potasio al 5% (p/v); segundo, las fibras fueron blanqueadas con tampón de acetato glacial y clorito de sodio a 80 °C durante 4 horas; y finalmente se realizó la hidrólisis con ácido sulfúrico a diferentes concentraciones (50%, 60% y 70%, v/v) y tiempos de hidrólisis (20, 30 y 40 minutos), a 45 °C en agitación constante. Por último, las nanocelulosas obtenidas fueron observadas a través del SEM. El contenido de lignina, celulosa, hemicelulosa, ceniza y humedad de la harina de cáscara de sandía fueron 10,00 ± 0,48%; 46,00 ± 0,15%; 23,00 ± 0,85%; 15,00 ± 0,26% y 10,30 ± 0,70%, respectivamente. El máximo rendimiento obtenido de nanocelulosa fue 64,96%, a 60% de ácido sulfúrico y 30 minutos de hidrólisis. La morfología de las nanocelulosas se observó mejor a 200 μm que a 100 μm. Las fibras de nanocelulosa estuvieron más expuestas y mejor distribuidas a 200 μm.

Citas

Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y., Abraham, E., Lapidot, S., & Shoseyov, O. (2016). Nanocellulose, a tiny fiber with huge applications. Current opinion in biotechnology, 39, 76-88.

Arantes, T. M., Coimbra, L. M., Cristovan, F. H., Arantes, T. M., Rosa, G. M., & Lião, L. M. (2018). Synthesis and Optimization of Colloidal Hydroxyapatite Nanoparticles by Hydrothermal Processes. Journal of the Brazilian Chemical Society, 29(9), 1894-1903.

Azeredo, H., Rosaa, M. F., y Mattosoba, L. (2017). Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 97, 664-671.

Bano, S., & Negi, Y. S. (2017). Studies on cellulose nanocrystals isolated from groundnut shells. 157, 1041-1049.

Cerqueira, J. C., Penha, J. D. S., Oliveira, R. S., Guarieiro, L. L. N., Melo, P. D. S., Viana, J. D., & Machado, B. A. S. (2017). Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers. Polímeros, 27(4), 320-329.

Chandra, J., George, N., & Narayanankutty, S. K. (2016). Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate polymers, 142, 158-166.

Coelho, C. C., Michelin, M., Cerqueira, M. A., Goncalves, C., Tonon, R. V., Pastrana, L. M., Teixeira, J. A. (2018). Cellulose nano-crystals from grape pomace: production, properties and cytotoxicity assessment. Carbohydrate polymers, 192, 327-336.

Dai, H., Ou, S., Huang, Y., & Huang, H. (2018). Utilization of pineapple peel for production of nanocellulose and film application. Cellulose, 25(3), 1743-1756.

Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A. P., Oksman, K., & Pothan, L. A. (2015). Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 22(2), 1075-1090.

Fakayode, O. A., Ahmed Aboagarib, E. A., Yan, D., Li, M., Wahia, H., Taiye Mustapha, A., & Ma, H. (2020). Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for water-melon rind delignification: Parametric screening and optimization via response surface methodology. Energy, 203, 1-37.

Hong, S., Song, Y., Yuan, Y., Lian, H., & Liimatainen, H. (2020). Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. Industrial Crops and Products, 143, 111913.

Ibrahim, A., Yusof, L., Beddu, N. S., Galasin, N., Lee, P. Y., Lee, R. N., & Zahrim, A. Y. (2016). Adsorption study of Ammonia Nitrogen by watermelon rind. IOP Conf. Series: Earth and Environmental Science, 36, 012020.

Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers. Polymer Chemistry, 6(25), 4497-4559.

Jiang, F., & Hsieh, Y. L. (2015). Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym., 122, 60-68.

Kian, L. K., Jawaid, M., Ariffin, H., & Karim, Z. (2018). Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. International Journal of Biological Macromolecules, 114, 54–63.

Khawas, P., & Deka, C. (2016). Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydrate Polymers, 137, 608–616.

Kouadri, I., & Satha, H. (2018). Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds. Industrial Crops & Products, 124, 787-796.

Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry, 2(1), 1-8.

Lavoine, N., & Bergström, L. (2017). Nanocellulose-based foams and aerogels: processing, properties, and applications. Journal of Materials Chemistry A, 5(31), 16105-16117.

Madureira, A. R., Atatoprak, T., Çabuk, D., Sousa, F., Pullar, R. C., & Pintado, M. E. (2018). Extraction and characterisation of cellulose nanocrystals from pineapple peel. International Journal of Food Studies, 7(1), 24-33.

Martins, D. F., de Souza, A. B., Henrique, M. A., Silvério, H. A., Neto, W. P. F., & Pasquini, D. (2015). The influence of the cellulose hydrolysis process on the structure of cellulose nanocrystals extracted from capim mombaça (Panicum maximum). Industrial Crops and Products, 65, 496-505.

Naduparambath, S., Jinitha, T. V., Shaniba, V., Sreejith, M. P., Balan, A. K., & Purushothaman, E. (2018). Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydrate polymers, 180, 13-20.

Naz, S., Ahmad, N., Akhtar, J., Ahmad, N. M., Ali, A., & Zia, M. (2016). Management of Citrus Waste by Switching in the Production of Nanocellulose. IET nanobiotechnology, 10(6), 395-399.

Olayinka, B. U., & Etejere, E. O. (2018). Proximate and Chemical Compositions of Watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai cv Red and Cucumber (Cucumis sativus L. cv Pipino). International Food Research Journal, 25(3), 1060-1066.

Prasanna, N., & Mitra, J. (2020). Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels. Carbohydrate Polymers, 247, 116706.

Ramesh, S., & Radhakrishnan, P. (2019). Cellulose nanoparticles from agro-industrial waste for the development of active packaging. Applied Surface Science, 484, 1274-1281.

Reis, R. S., Tienne, L. G., de HS Souza, D., Maria de Fátima, V. M., & Monteiro, S. N. (2020). Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. Journal of Materials Research and Technology, 9(4), 9412-9421.

Saba, N., & Jawaid, M. (2017). Recent advances in nanocellulose-based polymer nanocomposites. In Cellulose-Reinforced Nanofibre Composites.Woodhead Publishing, 89-112.

Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Comprehensive reviews in food science and food safety, 17, 512-531.

Tibolla, H., Pelissari, F. M., & Menegalli, F. C. (2014). Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Science and Technology, 59(2),1311-1318.

Widiarto, S., Yuwono, S. D., Rochliadi, A., & Arcana, I. M. (2017). Preparation and characterization of cellulose and nanocellulose from agro-industrial waste-cassava peel. In IOP Conference Series Material Science and Engineering, 176.

Wijaya, C. J., Saputra, S. N., Soetaredjo, F. E., Putro, J. N., Lin, C. X., Kurniawan, A., Ismadji, S. (2017). Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydrate Polymers, 175, 370–37.

Descargas

Publicado

2021-08-25

Cómo citar

García, D. ., Cordova-Ramos, J. S. ., Pilco-Quesada, S. ., Jave, J. ., & Ruiz, A. . (2021). Caracterización morfológica por microscopía electrónica de barrido de nanocelulosas de cáscara de sandía (Citrullus lanatus) . Agroindustrial Science, 11(2), 149-157. https://doi.org/10.17268/agroind.sci.2021.02.03

Número

Sección

Artículos