Ethanol production from sugar cane molasses and different strains of yeast

Authors

  • Claudia Natali Hernández Contreras Facultad de Ingeniería Química e Industrias Alimentarias, Universidad Nacional Pedro Ruíz Gallo, Calle Juan XXIII 391, Lambayeque, Perú
  • Roxana Jannet Purihuaman Guerrero Facultad de Ingeniería Química e Industrias Alimentarias, Universidad Nacional Pedro Ruíz Gallo, Calle Juan XXIII 391, Lambayeque, Perú
  • José Enrique Hernández Oré Facultad de Ingeniería Química e Industrias Alimentarias, Universidad Nacional Pedro Ruíz Gallo, Calle Juan XXIII 391, Lambayeque, Perú
  • Pedro Wilfredo Gamboa Alarcón Facultad de Ciencias Agrarias, Universidad Nacional Autónoma de Chota, Colpa Matara, Chota, Cajamarca, Perú

Keywords:

Fermentation, performance, molasses, ethyl alcohol, yeast

Abstract

The application of different sugar cane molasses conditions (yeast strain, antibiotic concentration and molasses pH) was aimed at obtaining the highest ethanol yield. In ethanol production, a 3x3x3 factorial design was used with 3 replicates per treatment, with antibiotic concentration levels: 10 ppm, 15 ppm and 20 ppm; pH: 4.6, 4.8 and 5.0 and yeast strains: Fleish-mann, Red Star and Fermipan Brown. The process applied involved molasses conditioning, fermentation and distillation. The results showed that the maximum ethanol yield (314.13 ± 8.77 L/MT of molasses) was obtained with the yeast strain Saccharomyces cerevisiae Fermipan Brown at pH 4.8 and antibiotic concentration of 15 ppm. In conclusion, the proposed treatment was shown to have a higher productivity in relation to the other proposed methods.

References

Argote V, F. E.; Cuervo M, R. A.; Osorio C, E.; Delgado-Ospina, J.; Villada, H. S. 2015. Evaluación de la producción de etanol a partir de melaza con cepas nativas Saccharomyces Cerevisiae. Biotecnología En El Sector Agropecuario y Agroindustrial, 13(2), 40–48. https://doi.org/10.18684/BSAA(13)40-48.

Arshad, M.; Hussain, T.; Abbas, M. 2017. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian Journal of Microbiology, 48, 403–409. https://doi.org/10.1016/j.bjm.2017.02.003.

Concepción, L. M.; del Risco, R. C. A.; Lorenzo, D. M.; Fajardo, M.; Pérez, J. C. 2005. Evaluación de una cepa de levadura para fermentar diferentes concentraciones de miel Apis mellifera. Estación experi-mental apícola Cuba.

García, M.; Ortíz, A. 2017. Una nueva prueba para el problema de igualdad de varianzas. Trabajo de Grado. Universidad Santo Tomás. Bogotá. Colombia.

Hernández, C. N.; Purihuaman, R. J. 2014. Evaluación de 3 cepas de levadura:Fleishmann, Red Star y Fer-mipan Brown, modificando el pH y Bactol Q (Bacteriostático)N para obtener la óptima producción de alcohol etílico a partir de la melaza. Tesis para optar el título profesional. Universidad Nacional Pedro Ruiz Gallo. Lambayeque. Perú.

Holcberg, I. B.; Margalith, P. 1981. Alcoholic fermentation by immobilized yeast at high sugar concentra-tions. European Journal of Applied Microbiology and Biotechnology, 13(3), 133–140. https://doi.org/10.1007/BF00703041.

Jayus, Nurhayati, Mayzuhroh, A.; Arindhani, S.; Caroenchai, C. 2016. Studies on Bioethanol Production of Commercial Baker’s and Alcohol Yeast under Aerated Culture Using Sugarcane Molasses as the Media. Agriculture and Agricultural Science Procedia, 9, 493–499. https://doi.org/10.1016/j.aaspro.2016.02.168.

Jiménez, A. M.; Borja, R.; Martín, A. 2004. A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented with Penicillium decumbens in batch reactors. Biochemical Engineering Journal, 18(2), 121–132. https://doi.org/10.1016/S1369-703X(03)00198-0.

Jones, R. P.; Pamment, N.; Greenfield, P. F. 1981. Alcohol fermentation by yeast: the efect of environ-mentntal and other variables. Process Biochem.; (United Kingdom), 16(3), 42–49.

Kopsahelis, N.; Bosnea, L.; Bekatorou, A.; Tzia, C.; Kanellaki, M. 2012. Alcohol production from sterilized and non-sterilized molasses by Saccharomyces cerevisiae immobilized on brewer’s spent grains in two types of continuous bioreactor systems. Biomass and Bioenergy, 45, 87–94. https://doi.org/10.1016/j.biombioe.2012.05.015.

Maiorella, B.; Wilke, C. R.; Blanch, H. W. 1981. Alcohol production and recovery. Materials Science, 20, 43–92. https://doi.org/10.1007/3-540-11018-6_3.

Ministerio de Desarrollo Agrario y Riego. n.d. Etanol. Retrieved January 19, 2022, from https://www.midagri.gob.pe/portal/29-sector-agrario/azucar/249-etanol?start=12.

Park, S. C.; & Baratti, J. 1991. Batch Fermentation Kinetics of Sugar Beet Molasses by Zymomonas mobilis. Biotechnology and Bioengineering, 38, 304–313. https://doi.org/10.1002/bit.260380312.

Puertas, M. 2018. Efecto de la cinética de hidrólisis ácida de almidón de maíz (zea mays l.) en el rendimiento para la obtención de etanol. Para optar el título profesional de Ingeniería Agroindustrial e Industrias Ali-mentarias. Universidad Nacional de Piura. Piura. Perú.

Thatipamala, R.; Rohani, S.; Hill, G. A. 1992. Effects of high product and substrate inhibitions on the kinet-ics and biomass and product yields during ethanol batch fermentation. Biotechnology and Bioengineer-ing, 40(2), 289–297. https://doi.org/10.1002/BIT.260400213.

Venkatachalam, S.; Periyasamy, S.; Ramasamy, S.; Srinivasan, V. 2014. Production of Bio-ethanol from Sugar Molasses Using Saccharomyces Cerevisiae. Modern Applied Science, 3(8), 32–37. https://doi.org/10.5539/mas.v3n8p32.

Published

2022-09-30

How to Cite

Hernández Contreras, C. N., Purihuaman Guerrero, R. J., Hernández Oré, J. E., & Gamboa Alarcón, P. W. (2022). Ethanol production from sugar cane molasses and different strains of yeast. Revista CIENCIA Y TECNOLOGÍA, 18(3), 65-70. Retrieved from https://revistas.unitru.edu.pe/index.php/PGM/article/view/4805

Issue

Section

Artículos Originales