Diseño Factorial para Elaborar, Seleccionar y Determinar una Cepa Va-cunal de Salmonella entérica Serotipo Enteritidis 82139

Autores/as

  • Liliana Veronica Villanueva-Alva Laboratorio de Biología y Microbiologia Molecular. Universidad Nacional de Trujillo. Av. Juan Pablo II s/n – Ciudad Uni-versitaria, Trujillo, Perú. r_bel_orbe@hotmail.com
  • Rafael Rotger-Anglada Laboratorio Microbiología Molecular Fac. Farmacia Dpto Microbiologia II - Universidad Complutense de Madrid – Espa-ña- Profesor Titular Dr. Rotger Anglada Rafael. Director Doctorado Microbiologia II
  • Raul Antonio Beltran–Orbegoso Laboratorio de Biología y Microbiologia Molecular. Universidad Nacional de Trujillo. Av. Juan Pablo II s/n – Ciudad Uni-versitaria, Trujillo, Perú

Palabras clave:

Proteinas TDOR via periplasmica ruta oxidativa DsbAy Dlp y Del, Proteinas TDOR cromosomico DsbAy Dle, Plasmidico Dlp en Salmonella enterica serotype Enteritidis 82139

Resumen

El diseño factorial permite elaborar, seleccionar y determinar una cepa vacunal de Salmonella entérica Serotipo Enteritidis 82139 con validación de función génica dsbA, dle y dlp con respecto a capacidad movilidad e invasión intracelular bacteriana por Diferencia Mínima significativa (DMS) y con 99% de nivel de confianza para movilidad y 95% para invasión intracelular bacteriana. Resultados al 0,025 DMS y significativamente diferente, donde Dle, sí presenta capacidad de invasión en MDCK a 1 hora de interacción bacteria – célula huésped, fase intracelular adherencia – internalización. Dlp, proteína altamente homóloga, capaz de complementar mutación dsbA-. Dle, presenta función específica y limitada. En ausencia de DsbA y Dlp, disminuye su capacidad invasiva a 1era, 2da y 4ta hora de interacción bacteriana. DsbA es determinante en 1era hora de interacción; Dlp de ubicación plasmídica tiene actividad complementaria a DsbA, con mayor potencial de actividad a 4ta hora. En ausencia de DsbA, Dlp y Dle, S. enteritidis pierde significativamente su capacidad de virulencia, interrelacionado función bajo una misma ruta, que se reoxidan por DsbB vía oxidativa. Dle, no tiene función en movilidad. Salmonella enteritidis 82139 2C, carente de dsbA y dlp es recurso genético cepa vacunal y 82139 2CI requerirá futuras investigaciones

Citas

Agudo, D. 2000. Efecto de la mutación dsbA sobre el crecimiento y expresión del gen spvB de Salmonella. Tesina de Licenciatura. Departamento de Microbiologia - Fac de Farmacia. Universidad Complutense de Madrid – España

Bardwell, J.; Lee, J.; Jander, G.; Martin, M.; Berlin, D.; Berckwith, J. 1994. A pathway for disulphide bond formation in vivo. Proc. Natl. Acad. Sci. USA. 90: 1038 – 1042.

Castañares, C. 2002. Clonación del gen rck de Salmonella enteritidis para el estudio de su función en la invasión de células de mamífero. Tesina de Licenciatura. Departamento de Microbiologia - Fac de Far-macia. Universidad Complutense de Madrid – España

Donnenberg, M. ; Zhang, H.; Stone, K. 1997. Biogenesis of the bundle- forming pilus of enteropathogenic Escherichia coli: reconstitution of fimbriae in recombinant E. coli and role of DsbA in pilin stability – a review. Gene 192: 33 – 38.

Dmitrij, F. 1996. DsbC Protein: A New member of the thiorredoxin fold – containig family. Biochemical and Biophysical Research Communications 219, 686 – 689. Article Nº 0295.

Dongxia, Lin.; Rao, CH.; Slauch, J. 2008. The Salmonella SPI1 Type Three Secretion System Responds to Periplasmic Disulfide Bond Status via the Flagellar Apparatus and the RcsCDB System. journal of bacte-riology, 190(1): 87-97.

Chivers, P.; Prehoda, K.; Raines, R. 1997. The CXXC Motif: A Rheostat in the Active Site. The American Chemical Society. 36(14): 4061- 6

Heras, B.; Totsika, M.; Jarrott, R.; Shouldice, S.; Guncar, G.; Achard, M.; Timothy, J.; Argente, M.; Alastair G.; McEwan, and Schembri M. 2010. Structural and Functional Characterization of Three DsbA Para-logues from Salmonella enterica Serovar Typhimurium. Journal of Biological Chemistry. 285(24): 18423–18432

Hernándes, S., Fernández C. y Baptista L. 1999. Metodología de la Investigación. 2da. Edic. Editoral Mc GRAW – HILL.México D.F. México. 497 pp

Hiniker, A.; Collet, Jean – Francois.; Bardwell, J.; Footnotes, Sh. 2005. Coopper Stress Causes na in vivo Requeriment for the Escherichia coli Disulfide Isomerase DsbC. Journal of Biology Chemistry . Protein Structure and folfing ISSUE 280 (40): 3785-33791

https://doi.org/10.107/jbc.M505742200

Inaba, K.; Takahashi, YH.; Fujieda, N.; Kano. K.; Miyoshi, H.; Ito, K.. 2004. DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation. J Biol Chem, 279: 6761-6768.

Fabianek, R.; Hennecke, H.; Thöny – Meyer, L. 1998. The active – site cysteines of the periplasmic Thior-redoxin – like protein CcmG of Escherichia coli are important but not essential for cytochrome c matu-ration in vivo. Journal of Bacteriology 180: 1947 – 1950.

Fabianek, R.; Hennecke, H.; Thony – Meyer, L. 2000. Periplasmic protein thiol disulfide oxidorreductases of Escherichia coli. FEMS Microbiology Rev. 24: 303 – 316.

Finlay, B.; Leung, K.; Rosenshine, I.; García del Portillo, F. 1992. Salmonella interactions with the epithelial cell. ASM News 58: 486 – 489.

Finlay, B. y Falkow, S. 1997. Common themes in microbial pathogenicity revisited. Microbiology and mo-lecular biology reviews 61: 136 – 169.

Galán, J. y Bliska, J. 1996. Cross – talk between bacterial pathogens and their host cells. Annu. Rev. Cell Dev. Biol. 12: 221 – 255.

Gallant, C.; Ponnampalam, T.; Spencer, H.; Hinton, J.; Martin, N. 2004. H-NS Represses Salmonella enteri-ca Serovar Typhimurium dsbA Expression during Exponential Growth. Journal of bacteriology. 186 (4): 910–918

Guddat, L.; Bardwell, J.; Glockshuber, R.; Huber – Wunderlich, M.; Zander, T.; Martin, J. 1997. Structural analysis of three His 32 mutants of DsbA: support for an electrostatic role of His 32 in DsbA stability. Protein Science 6: 1893 – 1900.

Holmgren, A. 1989. Thiorredoxin and glutaredoxin systems. The Journal of Biological Chemistry 264: 13963 - 13966

Jun, Yu. 1998. Inactivacion of DsbA, but not DsbC and DsbD, Affects the intracellular survival and viru-lence of Shigella flexneri. Infecction and inmunity. American Society for Microbiology. 66 (8): 3909-3917.

Kadokura, H. y Beckwith, J. 2002. Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA. The EMBO Journal. 21 (10): 2354 – 2363.

Kadokura, H; Tian, H.; Zander, T.; Bardwell JC.; Beckwith, J. 2004. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science, 303:534-537.

Mendoza del Cueto, 2002. Tesis Doctoral: Clonación del gen dsbA de Salmonella typhi y Salmonella enter-itidis Y caracterización del fenotipo resultante de su inactivación. Universidad Complutense de Madrid-Facultad de Farmacia. Departamento de Microbiología II: Microbiología Clínica Molecular. España.

Rodríguez – Peña, J.; Buisán, M., Ibáñez, M.; Rotger, R. 1997. Genetis map of the virulence of Salmonella enteritidis and nucleotide sequence of its replicons. Gene. 188: 53 – 61.

Rotger, R.; Rodríguez – Peña, J.; Buisán, M.; Ibáñez, M. 1995. Genética de la virulencia de Salmonella. Mi-crobiología y Genética Molecular. Tomo I: 13 – 27. Editorial Universidad UCM - Madrid – España

Rotger, R. y Casadesús, J. 1999. The virulence plasmid of Salmonella. Internatl. Microbiol. Tomo 2 : 177 – 184. Editorial Universidad UCM - Madrid – España

Tsuyoshi, M.; Okada N.; Danbara H. 2004. Two Periplasmic Disulfide Oxidoreductases, DsbA and SrgA, Target Outer Membrane Protein SpiA, a Component of the Salmonella Pathogenicity Island 2 Type III Secretion System. Journal of Biological Chemistry. 279 (33): 34631–34642

Villanueva, L. y Rotger, R. 2003. Efectos de la Inactivación y Complementación del gen dle de Salmonella enteritidis. Tesis Doctoral – DEA. Departamento de Microbiologia II – Facultad de Farmacia. Univer-sidad Complutense de Madrid – España.

Zapun, A.; Bardwell, J.; Creigton, T. 1993. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32: 5083 – 5092.

Zapun, A.; Missiakas, D.; Creighton T. 1995. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34: 5075 – 5089.

Zheng, W.; Quan, H.; Song, J.; Yang, S; Wang, CH. 1997. Does DsbA have chaperone – like activity?. Ar-chives of Biochemistry and Biophysics 337: 326 – 331.

Descargas

Publicado

2021-12-03

Cómo citar

Villanueva-Alva, L. V., Rotger-Anglada, R., & Beltran–Orbegoso, R. A. (2021). Diseño Factorial para Elaborar, Seleccionar y Determinar una Cepa Va-cunal de Salmonella entérica Serotipo Enteritidis 82139. Revista CIENCIA Y TECNOLOGÍA, 17(4), 125-136. Recuperado a partir de https://revistas.unitru.edu.pe/index.php/PGM/article/view/4073

Número

Sección

Artículos Originales