Compuestos fenólicos y capacidad antioxidante en tres ecotipos de maca (Lepidium meyenii Walp.) durante la pre-cosecha, cosecha y secado natural post-cosecha

Emilio Yábar, Rosana Chirinos, David Campos

Resumen


Este trabajo tuvo como objetivo evaluar el perfil HPLC-PDA de los compuestos fenólicos, su contenido y capacidad antioxidante en los extractos de los hipocótilos de maca amarilla, roja y negra durante las etapas de pre-cosecha, cosecha y secado natural post-cosecha. De la pre-cosecha al secado natural post-cosecha, en los tres ecotipos, se observó un incremento significativo de los compuestos fenólicos totales y su capacidad antioxidante. En la cosecha, la maca roja presentó la mayor concentración de compuestos fenólicos. Los análisis HPLC-PDA revelaron la prevalencia de 11 compuestos fenólicos, pero con diferentes concentraciones en cada ecotipo y en cada etapa de estudio, seis derivados del flavanol (flavan-3-ol), cuatro derivados del ácido benzoico y un derivado del ácido o-cumárico. El secado post-cosecha en condiciones naturales, generó una pérdida significativa (maca amarilla 89,90%, maca roja 82,49% y maca negra 66,31%) de compuestos fenólicos, principalmente derivados del ácido benzoico y o-cumárico, llegando a límites no detectables, toleraron estas condiciones dos derivados del flavanol (flavan-3-ol). Los resultados del estudio sugieren mejorar el manejo post-cosecha para preservar el contenido de compuestos fenólicos.


Palabras clave


Cultivos andinos; hipocótilos; Lepidium meyenii; alimento funcional.

Texto completo:

PDF

Referencias


Al-Weshahy, A.; El-Nokety, M.; Bakhete, M.; Rao, V. 2013. Effect of storage on antioxidant activity of freeze-dried potato peels. Food Research International 50(2): 507-512.

Amodio, M.L.; Derossi, A.; Colelli, G. 2014. Modeling phenolic content during storage of cut fruit and vegetables: A consecutive reaction mechanism. Journal of Food Engineering 140: 1-8.

Armesto, J.; Gómez-Limia, L.G.; Carballo, J.; Martínez, S. 2017. Impact of vacuum cooking and boiling, and refrigerated storage on the quality of galega kale (Brassica oleracea var. acephala cv. Galega). LWT - Food Science and Technology 79: 267-277.

Arnao, M.; Cano, A.; Acosta, M. 2003. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry 73(2): 239-244.

Awika, J.M.; Rooney, L.W.; Wu, X.; Prior, R.L.; Cisneros-Zevallos, L. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and Sorghum products. Journal of Agriculture and Food Chemistry 51(23): 6657-6662.

Camargo, L.; Milanez, J.; Moreno, R.; Cisneros-Zevallos, L. 2015. Post-harvest nutraceutical behaviour during ripening and senescence of 8 highly perishable fruit species from the Northern Brazilian Amazon region. Food Chemistry 174: 188-196.

Campos, D.; Noratto, G.; Chirinos, R.; Arbizu, C.; Roca, W.; Cisneros-Zevallos, L. 2006. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: Native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz and Pavón), oca (Oxalis tuberosa Molina) and ullucu (Ullucus tuberosum). Journal of the Science of Food and Agricultural 86(10): 1481-1488.

Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. 2011. Review Phenolic Compounds in Brassica Vegetables. Molecules 16(1): 251-280.

Costa, D.C.; Costa, H.S.; Gonçalves Albuquerque, T.; Ramos, F.; Castilho, M. C.; Sanches-Silva, A. 2015. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends in Food Science & Technology 45(2): 336-354.

Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10(3): 178-182.

Chirinos, R.; Betalleluz-Pallardel, I.; Huamán, A.; Arbizu, C.; Pedreschi, R.; Campos, D. 2009. HPLC-DAD characterisation of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chemistry 113(4): 1243-1251.

Chirinos, R.; Campos, D.; Arbizu, C.; Rogez, H.; Rees, J-F.; Larondelle, Y.; Noratto, G.; Cisneros-Zevallos, L. 2007a. Effect of genotype, maturity stage and post-harvest storage on phenolic compounds, carotenoid content and antioxidant capacity, of Andean mashua tubers (Tropaeolum tuberosum Ruiz & Pavón). Journal of the Science of Food and Agriculture 87(3): 437-446.

Chirinos, R.; Campos, D.; Costa, N.; Arbizu, C.; Pedreschi, R.; Larondelle, Y. 2008. Phenolic profiles of Andean mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers: Identification by HPLC-DAD and evaluation of their antioxidant activity. Food Chemistry 106(3): 1285-1298.

Chirinos, R.; Rogez, H.; Campos, D.; Pedreschi, R.; Larondelle, Y. 2007b. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purification Technology 55(2): 217-225.

Delcour, J.A.; Devarebeke, D. 1985. A new colorimetric assay for flavonoids in pilsner beers. Journal of the Institute of Brewing 91(1): 37-40.

Esua, O.J.; China, N.L.; Yusof, Y.A.; Sukor, R. 2019. Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chemistry 270: 113-122.

Giusti, M.M.; Wrolstad, R.E. 2001. Anthocyanins. Characterization and measurement with UV–Visible spectroscopy. In R. E. Wrolstad (Ed.), Current protocols in food analytical chemistry, Unit F 1.2 (pp. 1–13). New York: John Wiley & Sons.

Korkmaz, S. 2018. Antioxidants in maca (Lepidium meyenii) as a supplement in nutrition. In E. Shalaby (Ed.), Antioxidants in Foods and Its Applications (pp.138-154). IntechOpen Limited.

Lima, G.P.P.; Vianello, F.; Corrêa, C.R.; da Silva Campos, R.A.; Borguini, M.G. 2014. Polyphenols in fruits and vegetables and its effect on human health. Food and Nutrition Sciences 5(11): 1065-1082.

Liu, H.K.; Kang, Y.F., Zhao, X.Y.; Liu, Y.P.; Zhang, X.W.; Zhang, S.J. 2019. Effects of elicitation on bioactive compounds and biological activities of sprouts. Journal of Functional Foods 53: 136–145.

Liu, W.; Zu, Y.G.; Fu, Y.J.; Kong, Y.; Ma, W.; Yang, M.; Li, J.; Wu, N. 2010. Variation in contents of phenolic compounds during growth and post-harvest storage of pigeon pea seedlings. Food Chemistry 121(3): 732-739.

Lombardo, S.; Pandino, G.; Mauromicale, G. 2018. The influence of pre-harvest factors on the quality of globe artichoke. Scientia Horticulturae 233: 479-490.

Martins, N.; Petropoulos, S.; Ferreira, I.C. 2016. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry 211: 41-50.

Nath, A.; Bagchi, B.; Misra, L.K.; Deka, B.C. 2011. Changes in post-harvest phytochemical qualities of broccoli florets during ambient and refrigerated storage. Food Chemistry 127(4): 1510-1514.

Odeh, I.; Al-Rimawi, F.; Abbadi, J.; Obeyat; L.; Qabbajeh, M.; Hroub, A. 2014. Effect of Harvesting Date and Variety of Date Palm on Antioxidant Capacity, Phenolic and Flavonoid Content of Date Palm (Phoenix Dactylifera). Journal of Food and Nutrition Research 2(8): 499-505.

Ordóñez-Santos, L.E.; Vázquez-Odériz, L.; Arbones-Maciñeira, E.; Romero-Rodríguez, A. 2009. The influence of storage time on micronutrients in bottled tomato pulp. Food Chemistry 112(1): 146-149.

Patras, A.; Tiwari, B.K.; Brunton, N.P. 2011. Influence of blanching and low temperature preservation strategies on antioxidant activity and phytochemical content of carrots, green beans and broccoli. LWT-Food Science and Technology 4(1): 299-306.

Pinela, J.; Barros, L.; Barreira, J.C.M.; Carvalho, A.M.; Oliveira, B.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. 2018. Postharvest changes in the phenolic profile of watercress induced by post-packaging irradiation and modified atmosphere packaging. Food Chemistry 254: 70-77.

Sandoval, M.; Okuhama, N.N.; Angeles, F.M.; Melchor, V.V.; Condezo, L.A.; Lao, J.; Miller, M.J.S. 2002. Antioxidant activity of the cruciferous vegetable Maca (Lepidium meyenii). Food Chemistry 79(2): 207-213.

Singleton, V.L.; Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybedic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3): 144-158.

Tao, Y.; Han, M.; Gao, X.; Han, Y.; Show, P.L.; Liu, Ch.; Ye, X.; Xie, G. 2019. Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: Drying mechanism, bioactive profile, color and rehydration property. Ultrasonics Sonochemistry (In Press).

Tiwari, U.; Cummins, E. 2013. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Research International 50(2): 497-506.

Valea, A.P.; Santos, J.; Brito, N.V.; Marinho, C.; Amorim, V.; E.; Oliveira, B.P. 2015. Effect of refrigerated storage on the bioactive compounds and microbial quality of Brassica oleraceae sprouts. Postharvest Biology and Technology 109: 120-129.

Wang, B.; Huang, Q.; Venkitasamy, C.; Chai, H.; Gao, H.; Cheng, N.; Cao, W.; Lv, X.; Pan, Z. 2016. Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT - Food Science and Technology 66: 56-62.

Xue, Z.; Wang, C.; Zhai, L.; Yu, W.; Chang, H.; Kou, X.; et al. 2016. Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech Journal of Food Sciences 34(1): 68-78.

Zevallos-Concha, A.; Nuñez, D.; Gasco, M.; Vasquez, C.; Quispe, M.; Gonzales, G. F. 2016. Effect of gamma irradiation on phenol content, antioxidant activity and biological activity of black maca and red maca extracts (Lepidium meyenii Walp). Toxicology Mechanisms and Methods 26: 67-73.

Zhang, H.; Tsao, R. 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science 8: 33-42.

Zhang, J.; Tian, Y.; Yan, L.; Zhang, G.; Wang, X.; Zeng, Y.; et al. 2016. Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high–altitude adaptation in the central Andes. Molecular Plant 9: 1066-1077.

Zheng, W.; Wang, S.Y. 2003. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. Journal of Agriculture and Food Chemistry 51(2): 502-509.

Received June 18, 2018.

Accepted March 17, 2019.

Corresponding author: eyabar@uncp.edu.pe (E. Yábar).




DOI: http://dx.doi.org/10.17268/sci.agropecu.2019.01.10

Enlaces refback

  • No hay ningún enlace refback.


Indizada o resumida en:

           

  

      

            

    

     

   

                             

 

Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe