UV-C priming enhances antioxidant mechanisms and bioactive compound biosynthesis in broccoli sprouts

Autores

DOI:

https://doi.org/10.17268/sci.agropecu.2025.049

Palavras-chave:

proline, biocompounds, antioxidant system, broccoli sprouts, UV-C radiation

Referências

Abellán, Á., Domínguez-Perles, R., Moreno, D. A., & García-Viguera, C. (2019). Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients, 11(2), 429. https://doi.org/10.3390/nu11020429

Alagoz, S. M., Lajayer, B. A., & Ghorbanpour, M. (2023). Proline and soluble carbohydrates biosynthesis and their roles in plants under abiotic stresses. In Plant Stress Mitigators (pp. 169-185). Academic Press. https://doi.org/10.1016/b978-0-323-89871-3.00027-6

Ampofo, J. O., & Ngadi, M. (2020). Ultrasonic assisted phenolic elicitation and antioxidant potential of common bean (Phaseolus vulgaris) sprouts. Ultrasonics Sonochemistry, 64, 104974. https://doi.org/10.1016/j.ultsonch.2020.104974

Artés–Hernández, F., Miranda-Molina, F. D., Klug, T. V., & Martínez–Hernández, G. B. (2022). Enrichment of glucosinolate and carotenoid contents of mustard sprouts by using green elicitors during germination. Journal of Food Composition and Analysis, 110, 104546. https://doi.org/10.1016/j.jfca.2022.104546

Bates L. S., Waldren R. P., and I. D. Teare. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207. https://doi.org/10.1007/bf00018060

Bilgin, A. B., & Akocak, P. B. (2024). Improved postharvest quality attributes of sweet and sour cherry by using low pressure UV-C versus light-emitting diodes (LEDs). Scientia Horticulturae, 327, 112860. https://doi.org/10.1016/j.scienta.2024.112860

Cao, N., Fan, J., Yang, Z., Hao, L., Kang, Q., Liu, X., & Lu, J. (2020). Increasing Antioxidant Potentials of Mung Bean Sprouts. Current Topics in Nutraceutical Research, 18(1), 75-82.

Ercan, I., Tombuloglu, H., Alqahtani, N., Alotaibi, B., Bamhrez, M., et al. (2022). Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence, and nutrient content of barley (Hordeum vulgare L.). Plant Physiology and Biochemistry, 170, 36-48. https://doi.org/10.1016/j.plaphy.2021.11.033

Escobar-Hernández, D. I., González-García, Y., Olivares-Sáenz, E., & Juárez-Maldonado, A. (2024). Seedling priming with UV-A radiation induces positive responses in tomato and bell pepper plants under water stress. Scientia Horticulturae, 332, 113235. https://doi.org/10.1016/j.scienta.2024.113235

García‐Mosqueda, C., Cerón‐García, A., León‐Galván, M. F., Ozuna, C., López‐Malo, A., & Sosa‐Morales, M. E. (2023). Changes in phenolics and flavonoids in amaranth and soybean sprouts after UV‐C treatment. Journal of Food Science, 88(4), 1280-1291. https://doi.org/10.1111/1750-3841.16527

Gómez-Sagasti, M. T., López-Pozo, M., Artetxe, U., Becerril, J. M., Hernández, A., García-Plazaola, J. I., & Esteban, R. (2023). Carotenoids and their derivatives: A “Swiss Army knife-like” multifunctional tool for fine-tuning plant-environment interactions. Environmental and Experimental Botany, 207, 105229. https://doi.org/10.1016/j.envexpbot.2023.105229

Hernández-Aguilar, C., Dominguez-Pacheco, A., Tenango, M. P., Valderrama-Bravo, C., Hernández, M. S., Cruz-Orea, A., & Ordonez-Miranda, J. (2021). Characterization of bean seeds, germination, and phenolic compounds of seedlings by UV-C radiation. Journal of Plant Growth Regulation, 40(2), 642-655. https://doi.org/10.1007/s00344-020-10125-0

Jhanji, S., Goyal, E., Chumber, M., & Kaur, G. (2024). Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. Plant Physiology and Biochemistry, 108352. https://doi.org/10.1016/j.plaphy.2024.108352

Ji, H., Tang, W., Zhou, X., & Wu, Y. (2016). Combined effects of blue and ultraviolet lights on the accumulation of flavonoids in Tartary buckwheat sprouts. Polish Journal of Food and Nutrition Sciences, 66(2), 93-98. https://doi.org/10.1515/pjfns-2015-0042

Khanam, U. K. S., Oba, S., Yanase, E., & Murakami, Y. (2012). Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. Journal of Functional Foods, 4(4), 979-987. https://doi.org/10.1016/j.jff.2012.07.006

Li, C., Song, S., Yue, Y., & Liu, H. (2025). Preharvest CaCl2-HCl electrolyzed water treatment maintained the quality of broccoli sprouts during storage. Journal of Future Foods, 5(2), 208-217. https://doi.org/10.1016/j.jfutfo.2024.05.010

Li, L., Ma, P., Nirasawa, S., & Liu, H. (2024). Formation, immunomo-dulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human. Critical Reviews in Food Science and Nutrition, 64(20), 7118-7148. https://doi.org/10.1080/10408398.2023.2181311

Mariz-Ponte, N., Mendes, R.J., Sario, S., Melo, P., & Santos, C. (2018). Moderate UV-A supplementation benefits tomato seed and seedling invigoration: a contribution to the use of UV in seed technology. Scientia Horticulturae, 235, 357-366. https://doi.org/10.1016/j.scienta.2018.03.025

Moreira-Rodríguez, M., Nair, V., Benavides, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2017). UVA, UVB light doses and harvesting time differentially tailor glucosinolate and phenolic profiles in broccoli sprouts. Molecules, 22(7), 1065. https://doi.org/10.3390/molecules22071065

Ozuna, C., Cerón-García, A., Sosa-Morales, M. E., Salazar-Goméz, J. A., León-Galván, M. F., Abraham-Juárez, M. R. (2018). Electrically induced changes in amaranth seed enzymatic activity and their effect on bioactive compounds content after germination. Journal of Food Science and Technology, 55, 648-657. https://doi.org/10.1007/s13197-017-2974-0

Paucar-Menacho, L.M., Peñas, E., Dueñas, M., Frias, J., & Martínez-Villaluenga, C. (2017). Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT-Food Science and Technology, 76, 245-252. https://doi.org/10.1016/j.lwt.2016.07.038

Piechowiak, T. (2024). Elucidation of the mechanism of elicitation of edible sprouts using UV-C radiation. Biocatalysis and Agricultural Biotechnology, 103081. https://doi.org/10.1016/j.bcab.2024.103081

Piechowiak, T., & Balawejder, M. (2025). Succinic acid treatment enhances energy metabolism and antioxidant biosynthesis in radish sprouts. Journal of Biotechnology, 404, 144-151. https://doi.org/10.1016/j.jbiotec.2025.04.017

Rizi, M.R., Azizi, A., Sayyari, M., Mirzaie-Asl, A., & Conti, L. (2021). Increased phenylpropanoids production in UV-B irradiated Salvia verticillate as a consequence of altered genes expres-sion in young leaves. Plant Physiology and Biochemistry, 167, 174-184. https://doi.org/10.1016/j.plaphy.2021.07.037

Santin, M., Sciampagna, M. C., Mannucci, A., Puccinelli, M., Angelini, L. G., et al. (2022). Supplemental UV-B exposure influences the biomass and the content of bioactive compounds in Linum usitatissimum L. sprouts and microgreens. Horticulturae, 8(3), 213. https://doi.org/10.3390/horticulturae8030213

Sen, A., & Puthur, J. T. (2021). Halo- and UV-B priming-mediated drought tolerance and recovery in rice seedlings. Plant Stress, 2, 100011. https://doi.org/10.1016/j.stress.2021.100011

Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: auto-mation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55. https://doi.org/10.5344/ajev.1977.28.1.49

Terletskaya, N., Zobova, N., Stupko, V., & Shuyskaya, E. (2017). Growth and photosynthetic reactions of different species of wheat seedlings under drought and salt stress. Periodicum Biologorum, 119(1), 37-45. https://doi.org/10.18054/pb.v119i1.4408

Thomas, T. D., Dinakar, C., & Puthur, J. T. (2020). Effect of UV-B priming on the abiotic stress tolerance of stress-sensitive rice seedlings: Priming imprints and cross-tolerance. Plant Physiology and Biochemistry, 147, 21-30. https://doi.org/10.1016/j.plaphy.2019.12.002

Tian, X., Hu, M., Yang, J., Yin, Y., & Fang, W. (2024). Ultraviolet-B Radiation Stimulates Flavonoid Biosynthesis and Antioxidant Systems in Buckwheat Sprouts. Foods, 13(22), 3650. https://doi.org/10.3390/foods13223650

Urban, L., Charles, F., de Miranda, M.R.A., & Aarrouf, J. (2016). Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiology and Biochemistry, 105, 1-11. https://doi.org/10.1016/j.plaphy.2016.04.004

Verdaguer, D., Jansen, M.A., Llorens, L., Morales, L.O., & Neugart, S. (2017). UV-A radiation effects on higher plants: Exploring the known unknown. Plant science, 255, 72-81. https://doi.org/10.1016/j.plantsci.2016.11.014

Wang, M., Li, Y., Yang, Y., Tao, H., Mustafa, G., et al. (2023). Biofortification of health-promoting glucosinolates in cruciferous sprouts along the whole agro-food chain. Trends in Food Science & Technology, 104164. https://doi.org/10.1016/j.tifs.2023.104164

Xia, Y., Li, M. Y., Wadood, S. A., Hong, H. J., Liu, Y., et al. (2024). Identification of volatile and flavor metabolites in three varieties of broccoli sprouts. Food Chemistry: X, 24, 101862. https://doi.org/10.1016/j.fochx.2024.101862

Zhu, T., Yang, J., Zhang, D., Cai, Q., Zhou, D., et al. (2020). Effects of white LED light and UV-C radiation on stilbene biosynthesis and phytochemicals accumulation identified by UHPLC–MS/MS during peanut (Arachis hypogaea L.) germination. Journal of Agricultural and Food Chemistry, 68(21), 5900-5909. https://doi.org/10.1021/acs.jafc.0c01178

Downloads

Publicado

2025-09-01

Como Citar

Centeno-Rodríguez, M. A. C., Gómez-Salazar, J. A., Ruiz-Nieto, J. E., Martínez-Téllez, M. A., Casados-Vázquez, L. E., Sosa-Morales, M. E., & Cerón-García, A. (2025). UV-C priming enhances antioxidant mechanisms and bioactive compound biosynthesis in broccoli sprouts. Scientia Agropecuaria, 16(4), 647-657. https://doi.org/10.17268/sci.agropecu.2025.049

Edição

Seção

Artículos originales