Use of purple corn (Zea mays L.) cob in the formulation of functional teas developed using Flash Profile and CATA methods
DOI:
https://doi.org/10.17268/sci.agropecu.2025.044Palavras-chave:
purple corn, consumer-based sensory evaluation, sensory development, functional foodsResumo
Purple corn (Zea mays L.) is a superfood native to Peru, highly regarded for its functional properties and commonly used in the preparation of traditional beverages and desserts, such as chicha morada and mazamorra morada. Following processing, the corn cobs remaining as a byproduct retain significant amounts of bioactive compounds with potential for utilization. This study proposes their use as a primary component in the production of teas. To ensure product safety, the moisture content, total ash, and counts of enterobacteria and aflatoxins in the raw materials were first evaluated. Fourteen formulations were developed, varying in the proportions of corn cobs, quince, stevia, cinnamon, and cloves, as well as extraction times (5 and 10 minutes at 100 °C) with hot water. Two rapid sensory evaluation methods using consumer panels were applied sequentially: Flash Profile (FP) and Check-All-That-Apply (CATA), External preference mapping was then conducted, and the most acceptable teas were subjected to instrumental characterization. The FP methodology generated 400 sensory descriptors, classified semantically, from which 12 key descriptors were selected for the CATA test: sweet, stevia flavor, quince flavor, fruity flavor, fruity smell, astringent, bitter, cinnamon smell, reddish color, acid, purple and “Chicha morada” flavor. The confidence ellipses in the FP Multiple Factor Analysis (MFA) space allowed to identify six groups of formulations for the CATA test. This test revealed that the characteristics that improve consumer acceptability are: “Chicha morada” flavor, fruity flavor, sweet and fruity smell. The External Preference Mapping allowed to determine the formulations, with 90% preference among consumers, despite not being the ones with the highest concentrations of total polyphenols, antioxidant activity and monomeric anthocyanins. In conclusion, the sensory methodologies applied in this study help to elucidate the sensory characteristics that influence consumer acceptability, representing valuable tools for the development of new functional products from purple corn.
Referências
AOAC. (2019). Official methods of analysis of AOAC international. 21st ed. Maryland, USA.
Ares, G., Etchemendy, E., Antúnez, L., Vidal, L., Giménez, A., & Jaeger, S. R. (2014). Visual attention by consumers to check-all-that-apply questions: Insights to support methodological development. Food Quality and Preference, 32, 210-220. https://doi.org/10.1016/j.foodqual.2013.10.006
Ares, G., & Jaeger, S. R. (2013). Check-all-that-apply questions: Influence of attribute order on sensory product characterization. Food Quality and Preference, 28(1), 141-153.
Bruzzone, F., Vidal, L., Antúnez, L., Giménez, A., Deliza, R., & Ares, G. (2015). Comparison of intensity scales and CATA questions in new product development: Sensory characterisation and directions for product reformulation of milk desserts. Food Quality and Preference, 44, 183-193. https://doi.org/10.1016/j.foodqual.2015.04.017
Cao, Q. Q., Wang, F., Wang, J. Q., Chen, J. X., Yin, J. F., Li, L., et al. (2021). Effects of brewing water on the sensory attributes and physicochemical properties of tea infusions. Food Chemistry, 364, 130235. https://doi.org/10.1016/j.foodchem.2021.130235
Castañeda-Saucedo, M. C., Ramírez-Anaya, J. D. P., Tapia-Campos, E., & Diaz-Ochoa, E. G. (2019). Comparison of total phenol content and antioxidant activity of herbal infusions with added Stevia reabaudiana Bertoni. Food Science and Technology, 40, 117-123. https://doi.org/10.1590/fst.29718
Chavez-Marquez, E., Bernedo, M. S. B., de Jara, E. M., Quequezana-Bedregal, M. J., Gutierrez-Oppe, E. E., & de Alcântara Pessôa Filho, P. (2023). Development of intelligent and active potato starch films based on purple corn cob extract and molle essential oil. International Journal of Biological Macromolecules, 242, 125080. https://doi.org/10.1016/j.ijbiomac.2023.125080
Dairou, V., & Sieffermann, J. M. (2002). A comparison of 14 jams characterized by conventional profile and a quick original method, the Flash Profile. Journal of Food Science, 67(2), 826-834 p. https://doi.org/10.1111/j.1365-2621.2002.tb10685.x
De Mendiburu, F., & De Mendiburu, M. F. (2019). Package ‘agricolae’. R Package, version, 1(3), 1143-1149.
Delarue, J., & Sieffermann, J. M. (2004). Sensory mapping using Flash profile. Comparison with a conventional descriptive method for the evaluation of the flavour of fruit dairy products. Food quality and preference, 15(4), 383-392. https://doi.org/10.1016/S0950-3293(03)00085-5
Deng, S., Cao, Q. Q., Zhu, Y., Wang, F., Chen, J. X., Zhang, H., et al. (2023). Effects of natural spring water on the sensory attributes and physicochemical properties of tea infusions. Food Chemistry, 419, 136079. https://doi.org/10.1016/j.foodchem.2023.136079
Dooley, L., Lee, Y. S., & Meullenet, J. F. (2010). The application of check-all-that-apply (CATA) consumer profiling to preference mapping of vanilla ice cream and its comparison to classical external preference mapping. Food quality and preference, 21(4), 394-401. https://doi.org/10.1016/j.foodqual.2009.10.002
Díaz-García, A., Salvá-Ruíz, B., Bautista-Cruz, N., & Condezo-Hoyos, L. (2021). Optimization of a natural low-calorie antioxidant tea prepared from purple corn (Zea mays L.) cobs and stevia (Stevia rebaudiana Bert.). LWT, 150, 111952. https://doi.org/10.1016/j.lwt.2021.111952
Esmerino, E. A., Tavares Filho, E. R., Carr, B. T., Ferraz, J. P., Silva, H. L., Pinto, L. P., et al. (2017). Consumer-based product characterization using Pivot Profile, Projective Mapping and Check-all-that-apply (CATA): A comparative case with Greek yogurt samples. Food Research International, 99, 375-384. https://doi.org/10.1016/j.foodres.2017.06.001
Euromonitor International (2024). Tea in Perú. Prospects and opportunities. https://www.euromonitor.com/tea-in-peru
Galarreta-Morales, C., Ludena-Urquizo, F., Castillo-Arispe, M., Carrasco-Macedo, J., Ocampo-Ocampo, K., et al. (2025). Sensory development of whey-based yogurt with Cushuro (Nostoc sphaericum), through novel consumer-based sensory evaluation methods. International Dairy Journal, 106254.
Giusti, M. M., & Wrolstad, R. E. (1996). Characterization of Red Radish Anthocyanins. J Food Sci, 61(2), 322-326. https://doi.org/10.1111/j.1365-2621.1996.tb14186.x
Gómez, P., O. (2004). Dependencia en la temperatura de los cambios en atributos sensoriales, degradación de ácido ascórbico e inactivación enzimática durante el tratamiento de pasteurización en puré y néctar de tamarindo. Departamento de Ingeniería Química y Alimentos, Escuela de Ingeniería, Universidad de las Américas Puebla. 85 p.
Guggisberg, D., Piccinali, P., & Schreier, K. (2011). Effects of sugar substitution with Stevia, Actilight™ and Stevia combinations or Palatinose™ on rheological and sensory characteristics of low-fat and whole milk set yoghurt. International Dairy Journal, 21(9), 636-644.
Guillen-Sanchez, J., Mori-Arismendi, S., & Paucar-Menacho, L. M. (2010). Characteristics and functional properties of purple corn (Zea mays L.) var. subnigroviolaceous. Scientia Agropecuaria 5, 211-217. https://doi.org/10.17268/sci.agropecu.2014.04.05
Griñán, I., Galindo, A., Rodríguez, P., Morales, D., Corell, M., Centeno, A., et al. (2019). Volatile composition and sensory and quality attributes of quince (Cydonia oblonga Mill.) fruits as affected by water stress. Scientia Horticulturae, 244, 68-74. https://doi.org/10.1016/j.scienta.2018.09.013
Han, Z., Wen, M., Zhang, H., Zhang, L., Wan, X., & Ho, C. T. (2022). LC-MS based metabolomics and sensory evaluation reveal the critical compounds of different grades of Huangshan Maofeng green tea. Food Chemistry, 374, 131796. https://doi.org/10.1016/j.foodchem.2021.131796
Heo, J., Lee, S. J., Oh, J., Kim, M. R., & Kwak, H. S. (2023). Comparison of descriptive analysis and flash profile by naïve consumers and experts on commercial milk and yogurt products. Food Quality and Preference, 110, 104946. Https://doi.org/10.1016/j.foodqual.2023.104946
ICMSF. (2000). Food Microorganisms. Its meaning and enumeration methods. Enterobacterial count 2nd ed. 149-150 p. 2nd Ed 1983. Reprint 2000
INIA. (2019). Maíz morado INIA-601 posee mayores propiedades de antioxidantes. https://www.inia.gob.pe/2019-nota-159/
Jaeger, S. R., Lee, S. M., Kim, K. O., Chheang, S. L., Roigard, C. M., & Ares, G. (2018). CATA and RATA questions for product-focused emotion research: Five case studies using emoji questionnaires. Food Quality and Preference, 68, 342-348. https://doi.org/10.1016/j.foodqual.2018.04.001
Jing, P. U., Noriega, V., Schwartz, S. J., & Giusti, M. M. (2007). Effects of growing conditions on purple corncob (Zea mays L.) anthocyanins. J. of Agricultural and Food Chemistry, 55(21), 8625-8629. https://doi.org/ 10.1021/jf070755q
Kemp, S. E., Hort, J., & Hollowood, T. (Eds.). (2018). Descriptive analysis in sensory evaluation.
Lao, F., & Giusti, M. M. (2018). Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. Journal of Cereal Science, 80, 87-93. https://doi.org/10.1016/j.jcs.2018.01.001
Lao, F., Sigurdson, G. T., & Giusti, M. M. (2017). Health benefits of purple corn (Zea mays L.) phenolic compounds. Comprehensive Reviews in Food Science and Food Safety 16(2), 234-246. https://doi.org/10.1111/1541-4337.12249
Lê, S., & Husson, F. (2008). SensoMineR: A package for sensory data analysis. Journal of Sensory Studies, 23(1), 14–25.
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of statistical software, 25, 1-18.
Lee, S., Kwak, H. S., Kim, S. S., & Lee, Y. (2021). Combination of the Check-All-That-Apply (CATA) Method and Just-About-Right (JAR) Scale to Evaluate Korean Traditional Rice Wine (Yakju). Foods, 10(8), 1895. Https://doi.org/10.3390/foods10081895
Li, H. H., Luo, L. Y., Wang, J., Fu, D. H., & Zeng, L. (2019). Lexicon development and quantitative descriptive analysis of Hunan fuzhuan brick tea infusion. Food Research International, 120, 275-284. https://doi.org/10.1016/j.foodres.2019.02.047
Liñan-Pérez, J., Puma-Isuiza, G., & Valdez-Arana, J. (2023). Validation of the incorporation of emotional response in consumer-based sensory development: case study in Peruvian craft beers. Scientia Agropecuaria, 14(3), 375-384. https://doi.org/10.17268/sci.agropecu.2023.033
Liñan, J. (2019). Application of the KANO and CATA methods for the development of gluten-free brownies. La Molina National Agrarian University. 135 p.
Marketo, C., & Moskowitz, H. (2004). Sensory optimization and reverse engineering using JAR scales. In data analysis workshop summary: getting the most out of just-about-right data, Food Quality and Preference (Vol. 15, pp. 891-899).
Mohammadalinejhad, S., Almonaitytė, A., Jensen, I. J., Kurek, M., &d Lerfall, J. (2023). Alginate microbeads incorporated with anthocyanins from purple corn (Zea mays L.) using electrostatic extrusion: Microencapsulation optimization, characterization, and stability studies. International Journal of Biological Macromolecules, 246, 125684. https://doi.org/10.1016/j.ijbiomac.2023.125684
NMX. (1992). Food-Determination of total solids, dissolved solids and solids in suspension in water. Mexican standards. General Directorate of Standards. Secretariat of Commerce and Industrial Development (SCFI)- General Directorate of Standards. Mexican Standard NMX-F-527-1992. Mexico.
Oliveira, L. D. L. D., Carvalho, M. V. D., & Melo, L. (2014). Health promoting and sensory properties of phenolic compounds in food. Revista Ceres, 61, 764-779. https://doi.org/10.1590/0034-737x201461000002
Pagès, J. (2005). Collection and analysis of perceived product inter-distances using multiple factor analysis: Application to the study of 10 white wines from the Loire Valley. Food quality and preference, 16(7), 642-649.
Pascual, A. M., & Calderón, P. V. (2000). Microbiología alimentaria. Metodología analitica para alimentos y bebidas. 2° edición. Madrid,España. Editorial Díaz de Santos S.A.
Pedreschi, R., & Cisneros-Zevallos, L. (2007). Phenolic profiles of Andean purple corn (Zea mays L.). Food Chemistry, 100(3), 956-963. https://doi.org/10.1016/j.foodchem.2005.11.004
Puma-Isuiza, G. G., & Núñez-Saavedra, C. (2020). Comparación del Perfil Flash y Napping®-UPF en la caracterización sensorial de hot-dog. Revista de Investigaciones Altoandinas, 22(2), 135-145. https://doi.org/10.18271/ria.2020.601
Ramos-Escudero, F., Muñoz, A. M., Alvarado-Ortíz, C., Alvarado, A., & Yáñez, J. A. (2012). Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. Journal of medicinal Food, 15(2), 206-215. https://doi.org/10.1089/jmf.2010.0342
Ramos-Guerrero, F. G., López-Flores, B. C., Ramos-Gorbeña, J. C., & Silva-Jaimes, M. I. (2021). Factors that affect the microbiological stability of chicha morada during its production on an industrial scale: A Review. Journal of Food Protection, 84(12), 2151-2158. https://doi.org/10.4315/JFP-21-190
Rojas, M. L., Ramirez, K., & Linares, G. (2025). Biocompounds recovery from purple corn cob by-product: extraction kinetics, thermal and physicochemical stability of liquid and powdered anthocyanin-rich extract. Food and Bioproducts Processing, 149, 25-35.
Rolandelli, G., Favre, L. C., Aguirre-Calvo, T. R., Farroni, A. E., del Pilar Buera, M., & dos Santos Ferreira, C. (2023). An optimized purple corn cob extract as an ingredient for the development of maize-based extrudates with novel characteristics. Journal of Cereal Science, 114, 103809. https://doi.org/10.1016/j.jcs.2023.103809
R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Saharudin, A. M. I. B., Nazri, N. B. M., Roslee, H. B., Hawi, M. H. B., & Mar, S. O. (2020). Acceptance of stevia as a sugar substitute and its determinants among health educated individuals and its determinants. Curr Res Nutr Food Sci, 8(1), 226-237. https://dx.doi.org/10.12944/CRNFSJ.8.1.21
Saldaña, E., Rios-Mera, J., Arteaga, H., Saldaña, J., Samán, C. M., Selani, M. M., et al. (2018). How does starch affect the sensory characteristics of mazamorra morada? A study with a dessert widely consumed by Peruvians. International journal of gastronomy and food science, 12, 22-30. https://doi.org/10.1016/j.ijgfs.2018.01.002
Salvador‐Reyes, R., Sampaio, U. M., de Menezes Alves Moro, T., Brito, A. D. C. D., Behrens, J., Campelo, P. H., et al. (2022). Andean purple maize to produce extruded breakfast cereals: Impact on techno‐functional properties and sensory acceptance. Journal of the Science of Food and Agriculture, 103(2), 548-559. https://doi.org/10.1002/jsfa.12165
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. Https://doi.org/10.5344/ajev.1965.16.3.144
Seebauer, J. R., Moose, S. P., Fabbri, B. J., Crossland, L. D., & Below, F. E. (2004). Amino acid metabolism in maize earshoots. Implications for assimilate preconditioning and nitrogen signaling. Plant physiology, 136(4), 4326-4334.
Su, D., Xu, T., Li, Y., & Zhou, H. (2022). Flavor evolution in raw Pu-erh tea during manufacturing using different processing types. LWT, 154, 112905. https://doi.org/10.1016/j.lwt.2021.112905
Varela, P., & Ares, G. 2014. Novel techniques in sensory characterization and consumer profiling. Uruguay, Taylor & Francis Group, LLC. 408 p.
Vidal, L., Ares, G., Hedderley, D. I., Meyners, M., & Jaeger, S. R. (2018). Comparison of rate-all-that-apply (RATA) and check-all-that-apply (CATA) questions across seven consumer studies. Food Quality and Preference, 67, 49-58. https://doi.org/10.1016/j.foodqual.2016.12.013
Wang, S., Ng, K. H., Yee, K. H., Tang, Y., Meng, R., & He, W. (2023). Comparison of pivot profile, CATA, and pivot-CATA for the sensory profiling of instant black coffee. Food Quality and Preference, 108, 104858. https://doi.org/10.1016/j.foodqual.2023.104858
Wang, Z., Hwang, S. H., Quispe, Y. N. G., Arce, P. H. G., & Lim, S. S. (2017). Investigation of the antioxidant and aldose reductase inhibitory activities of extracts from Peruvian tea plant infusions. Food chemistry, 231, 222-230.
Wang, J., Shi, J., Zhu, Y., Ma, W., Yan, H., Shao, C., et al. (2022). Insights into crucial odourants dominating the characteristic flavour of citrus-white teas prepared from citrus reticulata Blanco ‘Chachiensis’ and Camellia sinensis ‘Fudingdabai’. Food Chemistry, 377, 132048. https://doi.org/10.1016/j.foodchem.2022.132048
Xu, H., Liu, M., Liu, H., Zhao, B., Zheng, M., & Liu, J. (2021). Anthocyanins from purple corn ameliorated obesity in high fat diet-induced obese mice through activating hepatic AMPK. Journal of Functional Foods, 84, 104582. https://doi.org/10.1016/j.jff.2021.104582
Yang, Z., & Zhai, W. (2010). Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative food science & emerging technologies, 11(1), 169-176. https://doi.org/10.1016/j.ifset.2009.08.012
Yang, Z., Baldermann, S., & Watanabe, N. (2013). Recent studies of the volatile compounds in tea. Food Research International, 53(2), 585-599. https://doi.org/10.1016/j.foodres.2013.02.011
Zapata, P. J., Martínez-Esplá, A., Gironés-Vilaplana, A., Santos-Lax, D., Noguera-Artiaga, L., & Carbonell-Barrachina, Á. A. (2019). Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT, 103, 139-146. https://doi.org/10.1016/j.lwt.2019.01.002
Zeng, L., Fu, Y. Q., Liu, Y. Y., Huang, J. S., Chen, J. X., Yin, J. F., et al. (2023). Comparative analysis of different grades of Tieguanyin oolong tea based on metabolomics and sensory evaluation. LWT, 174, 114423. https://doi.org/10.1016/j.lwt.2023.114423
Zhang, L., Cao, Q. Q., Granato, D., Xu, Y. Q., & Ho, C. T. (2020). Association between chemistry and taste of tea: A review. Trends in Food Science & Technology, 101, 139-149. https://doi.org/10.1016/j.tifs.2020.05.015
Zheng, Y., Li, Y., Pan, L., Guan, M., Yuan, X., Li, S., et al. (2024). Aroma and taste analysis of pickled tea from spontaneous and yeast-enhanced fermentation by mass spectrometry and sensory evaluation. Food Chemistry, 442, 138472. https://doi.org/10.1016/j.foodchem.2024.138472
Zhu, H., Ye, Y., He, H., & Dong, C. (2017). Evaluation of green tea sensory quality via process characteristics and image information. Food and Bioproducts Processing, 102, 116-122. https://doi.org/10.1016/j.fbp.2016.12.004

Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Scientia Agropecuaria

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).