Pleurotus spp: A cosmopolitan fungi of biotechnological importance
DOI:
https://doi.org/10.17268/sci.agropecu.2025.008Palavras-chave:
functional food, biodegradation, bioremediation, bioactive compounds, nutraceutical, PleurotusResumo
The genus Pleurotus presents a multivariate species diversity due to its ability to grow in different substrates and environments. Whether wild or cultivated, they are edible mushrooms, as they present a high nutritional value and are medicinal due to their bioactive compounds with positive health effects. The aim of this review is to highlight the importance of the genus Pleurotus, since it is a cosmopolitan mushroom, and its properties can be used in different industrial applications and be a functional alternative for our future. Due to their saprophytic nature, they produce enzymes that act on the substrate in which they grow, degrading lignocellulosic material such as wood, forest and agricultural residues, hardwoods, wood by-products, cereal straw, bagasse, etc., and thanks to this degradative capacity, their enzymes are used in a wide range of biotechnological and environmental applications. In order to increase their production and consumption not only for their nutritional qualities, but also for their nutraceutical and biotechnological qualities, ease of cultivation, low investment cost, etc., new ways are being sought to increase their performance in cultivation. Recently, research has expanded the search for alternative uses of the Pleurotus genus, which has led to an increase in its cultivation, as well as its application in different fields of biotechnology. The cultivation of Pleurotus mushrooms represents an opportunity to generate a sustainable process and incorporate the process into a circular economy, generating environmental, social and economic benefits. The use of agro-industrial substrates and the subsequent reuse of the spent substrate as compost or organic fertilizer reduces the amount of waste that ends up in landfills and minimizes methane production. This allows for a more sustainable and environmentally friendly production model. Therefore, it is necessary to develop strategies for the promotion, marketing and sustainable production of products derived from these fungi.
Referências
Abd, E. H., Abou-Zeid, A. M., Mostafa, A. A., & Arif, D. M. (2019). Biodegradation of textile dyes waste water by Pleurotus eryngii. Delta Journal of Science, 40(1), 88-100. https://doi.org/10.21608/djs.2019.139218
Abdel-Monem, N. M., El-Saadani, M. A., Daba, A. S., Saleh, S. R., Aleem, E. (2020). Exopolysaccharide-peptide complex from oyster mushroom (Pleurotus ostreatus) protects against hepatotoxicity in rats. Biochemistry and Biophysics Reports, 24, 100852. https://doi.org/10.1016/j.bbrep.2020.100852
Abdullah, E., Amirullah, NA., Vijayan, H., Abd Rashid, N., Abdullah, N., & Abidin, N. Z. (2024). Chemopreventive role of proteins and polysaccharides from Pleurotus tuber-regium. Food Bioscience, 60, 104311. https://doi.org/10.1016/j.fbio.2024.104311
Abou, F. S., El, S. Z., Sassine, Y. N. (2023). Pleurotus ostreatus Grown on agro-industrial residues: studies on microbial contamination and shelf-life prediction under different packaging types and storage temperatures. Foods, 12(3), 524. https://doi.org/10.3390/foods12030524
Adenipekun, I. O., & Fasidi, C. O. (2023). Effect of Crude Engine Oil and Aromatic Fractions of Pleurotus Pulmonarius Fries (Quelet). Applied Science and Biotechnology Journal for Advanced Research, 2(2), 13-17. https://doi.org/10.31033/abjar.2.2.3
Adline, A. E., Chinakwe, E. C., & Nwogwugwu, U. N. (2021). Screening of microbial isolates from petroleum effluent polluted site and optimization of culture conditions for cellulase production. J Environ Anal Toxicol, 11(S5), 003.
Ahmed, M., Abdullah, N., & Nuruddin, M. M. (2016). Yield and nutritional composition of oyster mushrooms: an alternative nutritional source for rural people. Sains Malaysiana, 45(11), 1609-1615.
Ahmed, S., Kadam, J., Mane, V., Patil, S., & Mmv, B. (2008). Biological efficiency and nutritional contents of Pleurotus florida (Mont.) singer cultivated on different agro-wastes. Nature Sci, 7(1), 44–48.
Al-Saffar, A. Z., Hadi, N. A., Khalaf, H. M., & Prof, A. (2020). Antitumor activity of β-glucan extracted from Pleurotus eryngii. Indian Journal of Forensic Medicine & Toxicology, 14(3), 2493.
Alam, N., Amin, R., Khan, A., Hossain, S., & Khan, L. A. (2007). Nutritional analysis of dietary mushroom-Pleurotus florida Eger and Pleurotus sajor-caju (Fr.) singer. Bangladesh J. Mushroom, 1(2), 1-7.
Alam, N., Yoon, K. N., Lee, T. S., & Lee, U. Y. (2011). Hypolipidemic Activities of dietary Pleurotus ostreatus in hypercholesterolemic rats. Mycobiology, 39(1), 45–51. https://doi.org/10.4489/MYCO.2011.39.1.045
Amirullah, N. A., Abidin, N. Z., Abdullah, N., & Manickam, S. (2021). Application of ultrasound towards improving the composition of phenolic compounds and enhancing in vitro bioactivities of Pleurotus pulmonarius (Fr.) Quél extracts. Biocatalysis and Agricultural Biotechnology, 31, 101881. https://doi.org/10.1016/j.bcab.2020.101881
Amit, K. M., Vinny, J., & Utkarsh, S. R. (2020). Cultivation techniques of oyster mushroom (Pleurotus sp). En: Research trends in food technology and nutrition. Edited by: Rashmi Shukla. AkiNik Publications. Nueva Delhi, India. 93 – 98 pp.
Atiwesh, G., Parrish, C. C., Banoub, J., & Le, T-AT. (2022). Lignin degradation by microorganisms: A review. Biotechnol. Prog, 38(2), e3226. https://doi.org/10.1002/btpr.3226
Baggio, C. H., Freitas, C. S., Marcon, R., Werner, M. F. P., Rae, G. A., & Smiderle, F. R. (2012). Antinociception of β-D-glucan from Pleurotus pulmonarius is possibly related to protein kinase C inhibition. Int. J. Biol. Macromol, 50, 872-877.
Beltrán-Delgado, Y., Morris Quevedo, H., Domínguez, O. D., Batista Corbal, P., & Llauradó Maury, G. (2021). Composición micoquímica y actividad antioxidante de la seta Pleurotus ostreatus en diferentes estados de crecimiento. Acta Biológica Colombiana, 26(1), 89-98. https://doi.org/10.15446/abc.v26n1.84519
Beltrán-Delgado, Y., Morris-Quevedo, H., Llauradó-Maury, G., Bermúdez-Savón, R. C., & García-Oduardo, N. (2020). Procedimientos para la producción de setas del género Pleurotus con potencial aplicación farmacológica. Revista Cubana de Química, 32(2), 245-261.
Bermúdez-Savón, R. C., García-Oduardo, N., Aguilera-Rodríguez, I. A., & Mendoza-Montero, Y. (2023). Biodegradación de residuos lignocelulósicos secundarios por Pleurotus spp. Tecnología Química, 43(1), 157-172.
Bhatnagar, A., Tamboli, E., & Mishra, A. (2021). Wastewater treatment and Mycoremediation by P. ostreatus mycelium. IOP Conference Series: Earth and Environmental Science, 775(1), 012003. https://doi.org/10.1088/1755-1315/775/1/012003
Bobek, P., & Galbavy, S. (2001). Effect of pleuran (beta-glucan from Pleurotus ostreatus) on the antioxidant status of the organism and on dimethylhydrazine-induced precancerous lesions in rat colon. British Journal of Biomedical Science, 58(3),164.
Bonciu, E. (2020). Aspects of the involvement of biotechnology in functional food and nutraceuticals. Agronomy Journal, 63(2), 261-266.
Carrasco-González, J. A., Serna-Saldívar, S. O., & Gutiérrez-Uribe, J. A. (2017). Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: potential use as food ingredient. Journal of Food Composition and Analysis, 58, 69-81. https://doi.org/10.1016/j.jfca.2017.01.016
Castro-Alves, V. C., Gomes, D., Menolli, N., Jr Sforça, M. L., & Nascimento, J. R. (2017). Characterization and immunomodulatory effects of glucans from Pleurotus albidus, a promising species of mushroom for farming and biomass production. International journal of biological macromolecules, 95, 215–223. https://doi.org/10.1016/j.ijbiomac.2016.11.059
Cruz-Ornelas, R., Sánchez-Vázquez, J. E., Amaya-Delgado, L., Guillén-Navarro, K., & Calixto-Romo, A. (2019). Biodegradation of NSAIDs and their effect on the activity of ligninolytic enzymes from Pleurotus djamor. 3 Biotech, 9(10), 373. https://doi.org/10.1007/s13205-019-1904-4
Cui, H. Y., Wang, C. L., Wang, Y. R., Li, Z. J., & Zhang, Y. N. (2015). The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264.7 macrophages. Chin. J. Nat. Med, 13, 355-360.
Cuzcano-Ruiz, A., Reyes-López, A., Nieto-Juárez, J., & Collantes-Díaz, I. (2020). Estudio de los fitoconstituyentes de Pleurotus ostreatus cultivado en residuos de pulpa de café. Tecnia, 30(2), 64-68. https://dx.doi.org/10.21754/tecnia.v30i2.806
Chen, R. R., Liu, Z. K., Liu, F., Ng, T. B. (2015). Antihyperglycaemic mechanisms of an aceteoside polymer from rose flowers and a polysaccharide-protein complex from abalone mushroom. Natural product research, 29(6), 558–561. https://doi.org/10.1080/14786419.2014.952230
Chun, S., Chambers, E. I. V., & Han, I. (2020). Development of a sensory flavor lexicon for mushrooms and subsequent characterization of fresh and dried mushrooms. Foods, 9(8), 980. https://doi.org/10.3390/foods9080980
Daliu, P., Santini, A., & Novellino, E. (2019). From pharmaceuticals to nutraceuticals: bridging disease prevention and management. Expert Review of Clinical Pharmacology, 12(1), 1–7. https://doi.org/10.1080/17512433.2019.1552135
De Obeso, F. V. A., & Scheckhuber, C. Q. (2021). From past to present: biotechnology in México using algae and fungi. Plants, 10(11), 2530. https://doi.org/10.3390/plants10112530
Diamantopoulou, P. A., & Philippoussis, A. N. (2015). Cultivated mushrooms: preservation and processing. En: Handbook of vegetable preservation and processing. Editado por: Hui YH, Özgül Evranuz E. CRC Press Editors, segunda edición. Florida, Estados Unidos de América. 495-526 pp. https://doi.org/10.1201/b19252-26
Dimopoulou, M., Kolonas, A., Mourtakos, S., Androutsos, O., & Gortzi, O. (2022). Nutritional composition and biological properties of sixteen edible mushroom species. Applied Sciences, 12(16), 8074. https://doi.org/10.3390/app12168074
Dissanayake, D., Abeytunga, T., Vasudewa, N. S., & Ratnasooriya, W. (2009). Inhibition of lipid peroxidation by extracts of Pleurotus ostreatus. Pharmacognosy Magazine, 4(19), 266-271.
Effiong, M. E., Umeokwochi, C. P., Afolabi, I. S., & Chinedu, S. N. (2024). Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Frontiers in nutrition, 10, 1279208. https://doi.org/10.3389/fnut.2023.1279208
El Enshasy, H., Agouillal, F., Mat, Z., Malek, R. A., Hanapi, S. Z., Leng, O. M., Dailin, D. J., & Sukmawati, D. (2019). Pleurotus ostreatus: A biofactory for lignin-degrading enzymes of diverse industrial applications. In: Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Springer, Cham. https://doi.org/10.1007/978-3-030-25506-0_5
El-Ramady, H., Abdalla, N., Fawzy, Z., Badgar, K., Llanaj, X., Törős, G., Hajdú, P., Eid, Y., & Prokisch, J. (2022). Green biotechnology of oyster mushroom (Pleurotus ostreatus): a sustainable strategy for myco-remediation and bio-fermentation. Sustainability, 14(6), 3667. https://doi.org/10.3390/su14063667
Elattar, A. M., Hassan, S., & Awd-Allah, S. F. A. (2019). Evaluation of oyster mushroom (Pleurotus ostreatus) cultivation using different organic substrates. Alexandria Science Exchange Journal, 40, 427-440. https://doi.org/10.21608/asejaiqjsae.2019.49370
Espinosa-Páez, E., Hernández-Luna, C. E., Longoria-García, S., Martínez-Silva, P. A., Ortiz-Rodríguez, I., Villarreal-Vera, M. T., & Cantú-Saldaña, C. M. (2021). Pleurotus ostreatus: A potential concurrent biotransformation agent/ingredient on development of functional foods (cookies). LWT, 148, 111727. https://doi.org/10.1016/j.lwt.2021.111727
Ferrera, C. R., Lara, H. M. E., & Sánchez, V. J. E. (2007). El género Pleurotus y su capacidad de crecer en medios de cultivo y suelo con diferentes concentraciones de petróleo. In: El cultivo de setas Pleurotus spp. en México. Edited by: Sánchez VJE, Martínez CD, Mata G y Leal LH. El Colegio de la Frontera Sur. Tapachula, Chiapas, México. 281 – 293 pp.
Gaitán-Hernández, R., Salmones, D., Pérez, M. R., & Mata, G. (2002). Manual práctico del cultivo de setas. Aislamiento, siembra y producción. Instituto de Ecología, A.C. Xalapa, Veracruz, México. 1-57 pp.
Galappaththi, M. C. A., Dauner, L., Madawala, S., & Karunarathna, S. C. (2021). Nutritional and medicinal benefits of Oyster (Pleurotus) mushrooms: a review. Fungal Biotec, 1(2), 65–87. https://doi.org/10.5943/FunBiotec/1/2/5
Gomes, C. R. C., Brugnari, T., Bracht, A., Peralta, R. M., & Ferreira, I. C. F. R. (2016). Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends in Food Science & Technology, 50, 103-117. https://doi.org/10.1016/j.tifs.2016.01.012
Gomes, T. G., Hadi, S. I. I. A., de Aquino Ribeiro, J. A., Segatto, R., Mendes, T. D., Helm, C. V., & de Siqueira F. G. (2022). Phorbol ester biodegradation in Jatropha curcas cake and potential as a substrate for enzyme and Pleurotus pulmonarius edible mushroom production. Biocatalysis and Agricultural Biotechnology, 45, 102498. https://doi.org/10.1016/j.bcab.2022.102498
González-Tijera, M., Mata, G., Trigos, Á., & Salmones, D. (2024). Production of the “maguey mushroom” Pleurotus agaves on formulated substrates. Scientia Fungorum, 55, e1466. https://doi.org/10.33885/sf.2024.55.1466
Grabarczyk, M., Mączka, W., Wińska, K., & Uklańska-Pusz, C. (2019). Mushrooms of the Pleurotus genus–properties and application. Biotechnology and Food Science, 83(1), 13-30. https://doi.org/10.34658/bfs.2019.83.1.13-30
Gupta, E., & Pragya, M. (2021). Functional Food with Some Health Benefits, So Called Superfood: A Review. Current Nutrition & Food Science, 17(2), 144-166. https://doi.org/10.2174/1573401316999200717171048
Guzmán, G. (2000). Genus Pleurotus (Jacq.: Fr.) P. Kumm (Agaricomycetideae): Diversity, taxonomic problems cultural and traditional medicinal uses. The International Journal of Medicinal Mushrooms, 2, 95-123. https://doi.org/10.3390/su14063667
Hadibarata, T., Kristanti, R. A., Bilal, M., Al-Mohaimeed, A. M., Chen, T. W., & Lam, M. K. (2022). Microbial degradation and transformation of benzo[a]pyrene by using a white-rot fungus Pleurotus eryngii F032. Chemosphere, 307(3), https://doi.org/10.1016/j.chemosphere.2022.136014
Hassan, M. A. A., Rouf, R., Tiralongo, E., May, T. W., & Tiralongo, J. (2015). Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int. J. Mol. Sci., 16(4), 7802-7838. https://doi.org/10.3390/ijms16047802
Hu, Y., Mortimer, P. E., Hyde, K. D., Kakumyan, P., & Thongklang, N. (2021). Mushroom cultivation for soil amendment and bioremediation. Circular Agricultural Systems, 1, 11. https://doi.org/10.48130/CAS-2021-0011
Huo, J., Zhang, M., Wang, D. S., Mujumdar, A., Bhandari, B., & Zhang, L. (2023). New preservation and detection technologies for edible mushrooms: a review. J Sci Food Agric, 103(7), 3230-3248. https://doi.org/10.1002/jsfa.12472
Ijeh, I. I., Okwujiako, I. A., Nwosu, P. C., & Nnodim, H. I. (2009). Phytochemical composition of Pleurotus tuber regium and effect of its dietary incorporation on body /organ weights and serum triacylglycerols in albino mice. J. Med. Plants Res, 3(11), 939–943.
Illuri, R., E, M., K, M., R, S. B., P, P., Nguyen, V. H., Bukhari, N. A., & Hatamleh, A. (2022). Bio-prospective potential of Pleurotus djamor and Pleurotus florida mycelial extracts towards Gram positive and Gram negative microbial pathogens causing infectious disease. J Infect Public Health, 15(2), 297-306. https://doi.org/10.1016/j.jiph.2021.10.012
Jacinto-Azevedo, B., Valderrama, N., Henríquez, K., Aranda, M., & Aqueveque, P. (2021). Nutritional value and biological properties of chilean wild and commercial edible mushrooms. Food Chem, 356, 129651. https://doi.org/10.1016/j.foodchem.2021.129651
Jang, J. H., Jeong, S. C., Kim, J. H., Lee, Y. H., Ju, Y. C., & Lee, J. S. (2011). Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chemistry, 127(2), 412-418. https://doi.org/10.1016/j.foodchem.2011.01.010
Jegadeesh, R., Lakshmanan, H., Kab-Yeul, J., Sabar, V., & Raaman, N. (2018). Cultivation of pink oyster mushroom Pleurotus djamor var. roseus on various agro-residues by low cost technique. J. Mycopathol. Res, 56(3), 213-220.
Juárez-Hernández, E., Pérez-Zavala, M., Román-Reyes, M., Barboza-Corona, J. E., & Macias, K. (2023). Overview of Pleurotus spp., edible fungi with various functional properties. International Food Research Journal, 30(5), 1074-1092. https://doi.org/10.47836/ifrj.30.5.01
Kamakshi, S., Lakshmi, A., Jenavio, B. R., Siva, R., & Lakshmanan, G. (2024). Antibacterial and photo dye degradative ability of copper oxide nanoparticles from Pleurotus cystidiosus. Nano Express, 5, 025029. https://doi.org/10.1088/2632-959X/ad560f
Kamel, I. M., Khalil, N. M., Atalla, S. M., & Seleem, S. S. (2021). Purification, molecular and biochemical characterization and biological applications of hemagglutinating lectin with anticancer activities from Pleurotus ostreatus. Plant Archives, 21(1), 416-431.
Kortei, N. K., & Wiafe-Kwagyan, M. (2015). Comparative appraisal of the total phenolic content, flavonoids, free radical scavenging activity and nutritional qualities of Pleurotus ostreatus (EM-1) and Pleurotus eous (P-31) cultivated on rice (Oryzae sativa) straw in Ghana. J Adv Biol Biotechnol, 3(4), 153–164.
Kumar, K. (2020). Nutraceutical potential and processing aspects of oyster mushrooms (Pleurotus species). Current Nutrition & Food Science, 16(1), 3-14. https://doi.org/10.2174/1573401314666181015111724
Kumar, V. V., Venkataraman, S., Kumar, P. S., George, J., Rajendran, D. S., Shaji, A., & Rathankumar, A. K. (2022). Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater. Environmental Pollution, 309, 119729. https://doi.org/10.1016/j.envpol.2022.119729
Lee, Y. L., Huang, G. W., Liang, Z. C., & Mau, J. L. (2007). Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT-Food Science and Technology, 40(5), 823-833. https://doi.org/10.1016/j.lwt.2006.04.002
Leo, V. V., Passari, A. K., Muniraj, I. K., Uthandi, S., Hashem, A., Abd Allah, E. F., & Singh, B. P. (2019). Elevated levels of laccase synthesis by Pleurotus pulmonarius BPSM10 and its potential as a dye decolorizing agent. Saudi Journal of Biological Sciences, 26(3), 464-468. https://doi.org/10.1016/j.sjbs.2018.10.006
Li, L., Ng, T. B., Song, M., Yuan, F., Liu, Z. K., Wang, C. L., Jiang, Y., Fu, M., & Liu, F. (2007). A polysaccharide-peptide complex from abalone mushroom (Pleurotus abalonus) fruiting bodies increases activities and gene expression of antioxidant enzymes and reduces lipid peroxidation in senescence-accelerated mice. Applied microbiology and biotechnology, 75(4), 863–869. https://doi.org/10.1007/s00253-007-0865-4
Li, Y. R., Liu, Q. H., Wang, H. X., & Ng, T. B. (2008). A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim Biophys Acta, 1780(1), 51-7. https://doi.org/10.1016/j.bbagen.2007.09.004
Lin, J. T., Liu, C. W., Chen, Y. C., Hu, C. C., Juang, L. D., Shiesh, C. C., & Yang, D. J. (2014). Chemical composition, antioxidant and anti-inflammatory properties for ethanolic extracts from Pleurotus eryngii fruiting bodies harvested at different time. LWT, 55, 374–382.
Maadani Mallak, A., Lakzian, A., Khodaverdi, E., Haghnia, G. H., & Mahmoudi, S. (2020). Effect of Pleurotus ostreatus and Trametes versicolor on triclosan biodegradation and activity of laccase and manganese peroxidase enzymes. Microbial pathogenesis, 149, 104473. https://doi.org/10.1016/j.micpath.2020.104473
Madaan, S., Jabar, S. I. A., & Panda, B. P. (2022). Fatty acids of Pleurotus florida mushroom: Potential molecules for blood glucose control. Food Bioscience, 46, 101558. https://doi.org/10.1016/j.fbio.2022.101558
Magamana, E., Melila, M., Kamou, H., Nadjombe, P., Agossou, K. E., & Guelly, K. A. (2023). Nutritional potential of two species of mushroom edible by the Tem and Kabyè peoples living along the alédjo wildlife Reserve: P. tuber-regium (Fr.) Fr and C. platyphyllus Heinem. Asian Journal of Food Research and Nutrition, 2(4), 462-475. https://journalajfrn.com/index.php/AJFRN/article/view/70.
Majesty, D., Ijeoma, E., Winner, K., & Prince, O. (2019). Nutritional, anti-nutritional and biochemical studies on the oyster mushroom, Pleurotus ostreatus. EC Nutrition, 14, 36-59.
Martínez-Flores, H. E., Contreras-Chávez, R., & Garnica-Romo, M. G. (2021). Effect of extraction processes on bioactive compounds from Pleurotus ostreatus and Pleurotus djamor: their applications in the synthesis of silver nanoparticles. J Inorg Organomet Polym, 31, 1406–1418. https://doi.org/10.1007/s10904-020-01820-2
Menikpurage, I. P., Abeytunga, D. T., Jacobsen, N. E., & Wijesundara, R. L. (2009). An oxidized ergosterol from Pleurotus cystidiosus active against anthracnose causing Colletotrichum gloeosporioides. Mycopathologia, 167(3), 155–162. https://doi.org/10.1007/s11046-008-9158-4
Meza-Menchaca, T., Poblete-Naredo, I., Albores-Medina, A., Pedraza-Chaverri, J., Quiroz-Figueroa, F. R., Cruz-Gregorio, A., & Trigos, Á. (2020). Ergosterol peroxide isolated from oyster medicinal mushroom, Pleurotus ostreatus (Agaricomycetes), potentially induces radiosensitivity in cervical cancer. International Journal of Medicinal Mushrooms, 22(11), 1109-1119. https://doi.org/10.1615/IntJMedMushrooms.2020036673
Meza-Menchaca, T., Suárez-Medellín, J., Del Ángel-Piña, C., & Trigos, Á. (2015). The amoebicidal effect of ergosterol peroxide isolated from Pleurotus ostreatus. Phytotherapy Research, 29(12), 1982-1986. https://doi.org/10.1002/ptr.5474
Mitra, P., Khatua, S., & Acharya, K. (2013). Free radical scavenging and nos activation properties of water soluble crude polysaccharide from Pleurotus ostreatus. Asian journal of pharmaceutical and clinical research, 6(3), 67-70.
Mohammadi-Sichani, M., Mazaheri Assadi, M., Farazmand, A., Kianirad, M., Ahadi, A. M., & Hadian-Ghahderijani, H. (2019). Ability of Agaricus bisporus, Pleurotus ostreatus and Ganoderma lucidum compost in biodegradation of petroleum hydrocarbon-contaminated soil. Int. J. Environ. Sci. Technol, 16, 2313–2320 https://doi.org/10.1007/s13762-017-1636-0
Morales-Flores, S., Cepeda-Negrete, J., Mata-Montes, G., Ángel-Hernández, A., Hernández-Ruiz, J., & Eric Ruiz-Nieto, J. (2022). In vitro molecular identification and characterization of Pleurotus spp. strains in guanajuato, México. Agrociencia, 52(2). https://doi.org/10.47163/agrociencia.v56i2.2780
Mshandete, A. M., & Cuff, J. (2009). Cultivation of three types of indigenous Wild edible mushrooms: Coprinus cinereus, Pleurotus flabellatus and Volvariella volvocea on composted sisal decortications residue in Tanzania. Afr. J. Biotechnol, 7(24), 4551-4562.
Muliyadi, S. A., Mulok, T., Hussain, N. H., & Nor, R. M. (2022). Bioremediation of textile wastewater using Pleurotus pulmonarius. J Sustain Sci Management, 17(2), 67-76.
Murugesan, A. K., & Gunasagaran, K. S. (2021). Purification and characterization of a synergistic bioactive lectin from Pleurotus flabellatus (PFL-L) with potent antibacterial and in-vitro radical scavenging activity. Analytical Biochemistry, 635, 114450. https://doi.org/10.1016/j.ab.2021.114450
Muswati, C., Simango, K., Tapfumaneyi, L., Mutetwa, M., & Ngezimana, W. (2021). The effects of different substrate combinations on growth and yield of oyster mushroom (Pleurotus ostreatus). International Journal of Agronomy, ID 9962285. https://doi.org/10.1155/2021/9962285
Muzaffar, M., Rasool, F., Sofi, T. A., Shikari, A. B., Mir, S. A., & Lone, G. M. (2023). Morphological characterization of different Pleurotus species under Kashmir conditions. Pharma Innovation, 12(7), 3767-3770.
Naraian, R., Kumari, S., & Gautam, R. L. (2018). Biodecolorization of brilliant green carpet industry dye using three distinct Pleurotus spp. Environmental Sustainability, 1, 141–148. https://doi.org/10.1007/s42398-018-0012-4
Nguyen, T. K., Im, K. H., Choi, J., Shin, P. G., & Lee, T. S. (2016). Evaluation of antioxidant, anti-cholinesterase, and anti-inflammatory effects of culinary mushroom Pleurotus pulmonarius. Mycobiology, 44(4), 291-301. https://doi.org/10.5941/MYCO.2016.44.4.291
Njoku, K. L., Yussuf, A., Akinola, M. O., Adesuyi, A. A., Jolaoso, A. O., & Adedokun, A. H. (2016). Mycoremediation of petroleum hydrocarbon polluted soil by Pleurotus pulmonarius. Ethiopian Journal of Environmental Studies & Management, 9(1), 865-875. https://doi.org/10.4314/ejesm.v9i1.6s
Ogidi, C. O., Ubaru, A. M., Ladi-Lawal, T., Thonda, O. A., Aladejana, O. M., & Malomo, O. (2020). Bioactivity assessment of exopolysaccharides produced by Pleurotus pulmonarius in submerged culture with different agro-waste residues. Heliyon, 6(12), e05685. https://doi.org/10.1016/j.heliyon.2020.e05685
Oyetayo, V. O., Ogidi, C. O., Bayode, S. O., & Enikanselu, F. F. (2021). Evaluation of biological efficiency, nutrient contents and antioxidant activity of Pleurotus pulmonarius enriched with Zinc and Iron. Indian Phytopathology, 74, 901-910. https://doi.org/10.1007/s42360-021-00410-7
Pan, M., Kong, F., Xing, L., Yao, L., Li, Y., Liu, Y., & Li, L. (2022). The structural characterization and immunomodulatory activity of polysaccharides from Pleurotus abieticola fruiting bodies. Nutrients, 14(20), 4410. https://doi.org/10.3390/nu14204410
Pilafidis, S., Diamantopoulou, P., Gkatzionis, K., & Sarris, D. (2022). Valorization of agro‐industrial wastes and residues through the production of bioactive compounds by macrofungi in liquid state cultures: growing circular economy. Applied Sciences, 12(22), 11426. https://doi.org/10.3390/app122211426
Pineda-Alegría, J. A., Sánchez-Vázquez, J. E., Gonzalez-Cortazar, M., Zamilpa, A., López-Arellano, M. E., Cuevas-Padilla, E. J., & Aguilar-Marcelino, L. (2017). The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. Journal of Medicinal Food, 20(12), 1184-1192. https://doi.org/10.1089/jmf.2017.003
Rai, R. D., & Arumuganathan, T. (2008). Post harvest technology of mushrooms. National Research Centre for Mushroom. Chambaghat, Solan, India. 16-49 pp.
Rajarathnam, S., Bano, Z., & Miles, PG. (1987). Pleurotus mushrooms. Part I A. morphology, life cycle, taxonomy, breeding, and cultivation. CRC Critical Reviews in Food Science and Nutrition, 26(2), 157–223. https://doi.org/10.1080/10408398709527465
Ramakrishnan, M., Dubey, C., Tulasi, V., Kislai, P., & Manohar, N. (2017). Investigation of lovastatin, the anti-hypercholesterolemia drug molecule from three oyster mushroom species. International Journal of Biomedical and Clinical Sciences, 2(4), 26-31.
Raman, J., Kab-Yeul, Jang., Youn-Lee, Oh., Minji, Oh., Ji-Hoon, Im., Hariprasath, L., & Vikineswary, S. (2021). Cultivation and nutritional value of prominent Pleurotus spp.: an overview. Mycobiology, 49(1), 1-14. https://doi.org/10.1080/12298093.2020.1835142
Ritota, M., & Manzi, P. (2019). Pleurotus spp. Cultivation on different agri-food by-products: example of biotechnological application. Sustainability, 11(18), 5049. https://doi.org/10.3390/su11185049
Rojas, J. S., Lopera, V. J. S., Uribe, O. A., Correa, P. S., Perilla, H. N., & Marín, C. J. S. (2015). Consumo de nutracéuticos, una alternativa en la prevención de las enfermedades crónicas no transmisibles. Biosalud, 14(2), 91-103. https://doi.org/10.17151/biosa.2015.14.2.9
Roshandel, F., Saadatmand, S., Iranbakhsh, A., & Ardebili, A. O. (2021). Mycoremediation of oil contaminant by Pleurotus florida (P. Kumm) in liquid culture. Fungal Biology, 125(9), 667-678. https://doi.org/10.1016/j.funbio.2021.04.002
Royse, D. J., & Sánchez, J. E. (2017). Producción mundial de setas Pleurotus spp. con énfasis en países iberoamericanos. In: La biología, el cultivo y las propiedades nutricionales y medicinales de las setas Pleurotus spp. Edited by: Sánchez JE, Royse DJ. El Colegio de la Frontera Sur. San Cristóbal de Las Casas, Chiapas, México. 17-25 pp.
Sá, H., Michelin, M., Silvério, S. C., Maria de Lourdes, T. M., Silva, A. R., Pereira, L., & Silva, B. (2024). Pleurotus ostreatus and Lentinus sajor-caju laccases for sulfamethoxazole biotransformation: Enzymatic degradation, toxicity and cost analysis. Journal of Water Process Engineering, 59, 104943. https://doi.org/10.1016/j.jwpe.2024.104943
Sadiq, S., Mahmood-ul-Hassan, M., Rafiq, N., & Ahad, K. (2019). Spent mushroom compost of Pleurotus ostreatus: a tool to treat soil contaminated with endosulfan. Compost Science & Utilization, 27(4), 193-204. https://doi.org/10.1080/1065657X.2019.1666067
Salmones, D. (2017). Pleurotus djamor, un hongo con potencial aplicación biotecnológica para el neotrópico. Revista mexicana de micología, 46, 73-85.
Sardar, H., Anjum, M. A., Hussain, S., Ali, S., Shaheen, M. R., Ahsan, M., Ejaz, S., Ahmad, K. S., Naz, S., & Shafique, M. (2022). Deciphering the role of moringa leaf powder as a supplement in the cottonwaste substrate for the growth and nutrition of king oyster mushroom. Sci. Hortic, 293, 110694. https://doi.org/10.1016/j.scienta.2021.110694
Satou, T., Kaneko, K., Li, W., & Koike, K. (2008). The toxin produced by Pleurotus ostreatus reduces the head size of nematodes. Biological and Pharmaceutical Bulletin, 31(4), 574-576. https://doi.org/10.1248/bpb.31.574
Sekan, A. S., Myronycheva, O. S., Karlsson, O., Gryganskyi, A. P., & Yaroslav, B. (2019). Green potential of Pleurotus spp. in biotechnology. Green potential of Pleurotus spp. in biotechnology. PeerJ, 29(7), e6664. https://doi.org/10.7717/peerj.6664
Sen, P., Kosre, A., Deepali, C. N. K., & Jadhav, S. K. (2021). Nutrients and Bioactive compounds of Pleurotus ostreatus mushroom. A Journal of Alumni Association of Biotechnology, 3(2), 8-12.
Silva, S. O., da Costa, S. M. G., & Clemente, E. (2002). Chemical composition of Pleurotus pulmonarius (Fr.) Quel. substrates and residue after cultivation. Braz Arch Biol Technol, 45(4), 531–535.
Silveira, R. M. B., Monereo, M. S., & Molina, B. B. (2003). Alimentos funcionales y nutrición óptima. ¿cerca o lejos? Rev. Esp. Salud Pública, 77(3), 317-331.
Singh, M., Kamal, S., & Sharma, V. P. (2021). Status and trends in world mushroom production-III-World production of different mushroom species in 21st Century. Mushroom Research, 29(2).
Singh, M., Singh, V. (2011). Yield performance and nutritional analysis of Pleurotus citrinopileatus on different agrowastes and vegetable wastes. Conference: 7th International Conference on Mushroom Biology and Mushroom Products, 1, 385-392.
Singh, M. P., Vishwakarma, S. K., & Srivastava, A. K. (2013). Bioremediation of direct blue 14 and extracellular ligninolytic enzyme production by white rot fungi: Pleurotus spp. BioMed Research International, ID 180156, 4. https://doi.org/10.1155/2013/180156
Smiderle, F. R., Olsen, L. M., Carbonero, E. R., Marcon, R., Baggio, C. H., Freitas, C. S., Santos, A. R. S., Torri, G., Gorin, P. A. J., & Iacomini, M. (2008). A 3-O-methylated mannogalactan from Pleurotus pulmonarius: structure and antinociceptive effect. Phytochemistry, 69(15), 2731-2736. https://doi.org/10.1016/j.phytochem.2008.08.006
Sneha, M., Sanket, R., Niraj, K., & Namdeo, S. (2022). Overview of nutraceuticals. Asian Journal of Pharmaceutical Research, 12(1), 61-70. https://doi.org/10.52711/2231-5691.2022.00010
Šrédlová, K., Škrob, Z., Filipová, A., Mašín, P., Holecová, J., & Cajthaml, T. (2020). Biodegradation of PCBs in contaminated water using spent oyster mushroom substrate and a trickle-bed bioreactor. Water research, 170, 115274. https://doi.org/10.1016/j.watres.2019.115274
Sun, Y., Hu, X., & Li, W. (2017). Antioxidant, antitumor and immunostimulatory activities of the polypeptide from Pleurotus eryngii mycelium. International journal of biological macromolecules, 97, 323-330. https://doi.org/10.1016/j.ijbiomac.2017.01.043
Suseem, S. R., & Saral, M. (2013). Analysis on total antioxidant activity of Pleurotus eous mushroom correlated to its phenolic and flavonoid content. Int. J. Drug Dev. Res, 5(1), 174-178.
Teniou, S., Bensegueni, A., Hybertson, B. M., Gao, B., Bose, S. K., McCord, J. M., Chovelon B, Bensouici, C., Boumendjel, A., & Hininger-Favier, I. (2022). Biodriven investigation of the wild edible mushroom Pleurotus eryngii revealing unique properties as functional food. Journal of Functional Foods, 89, 104965. https://doi.org/10.1016/j.jff.2022.104965
Torres-Martínez, B. M., Vargas-Sánchez, R. D., Torrescano-Urrutia, G. R., Esqueda, M., Rodríguez-Carpena, J. G., Fernández-López, J., Perez-Álvarez, J. A., & Sánchez-Escalante, A. (2022). Pleurotus genus as a potential ingredient for meat products. Foods, 11(6), 779. https://doi.org/10.3390/foods11060779
Valencia del Toro, G., & Garín, A. M. E. (2017). Otras propiedades medicinales y funcionales de las setas Pleurotus spp. In: La biología, el cultivo y las propiedades nutricionales y medicinales de las setas Pleurotus spp. Edited by: Sánchez JE y Royse DJ. El Colegio de la Frontera Sur. San Cristóbal de las Casas, Chiapas, México. 241-257 pp.
Velázquez-De Lucio, B. S., Téllez-Jurado, A., Hernández-Domínguez, E. M., Tovar-Jiménez, X., Castillo-Ortega, L. S., Mercado-Flores, Y., & Álvarez-Cervantes, J. (2022). Evaluación del bagazo Agave salmiana como sustrato para el cultivo de Pleurotus djamor. Revista Mexicana de Ingeniería Química, 21(1), Bio2735-Bio2735.
Velázquez-De Lucio, B. S., Hernández-Domínguez, E. M., Falcón-León, M. P., Téllez-Jurado, A., & Álvarez-Cervantes, J. (2024). Revalorization of degraded maguey pulquero substrate for Lycopersicon esculentum germination. Current Research in Microbial Sciences, 7, 100283.
Viruthambigai, S., Kannan, R., Arumugam, P. M., Ramamoorthy, V., Reihana, R., & Parthiban, V. K. (2019). Studies on morphological and growth characters of new Pleurotus isolates. J Pharmacogn Phytochem, 8(3), 3328-3330.
Wali, A., Gupta, M., Gupta, S., Sharma, V., Salgotra, R. K., & Sharma, M. (2020). Lignin degradation and nutrient cycling by white rot fungi under the influence of pesticides. 3 Biotech, 10, 1-7. https://doi.org/10.1007/s13205-020-02251-z
Wang, S., Bao, L., Zhao, F., Wang, Q., Li, S., Ren, J., Li, L., Wen, H., Guo, L., & Liu, H. (2013). Isolation, identification, and bioactivity of monoterpenoids and sesquiterpenoids from the mycelia of edible mushroom Pleurotus cornucopiae. Journal of Agricultural and Food Chemistry, 61(21), 5122-5129. https://doi.org/10.1021/jf401612t
Wu, X., Zheng, S., Cui, L., Wang, H., & Bun, T. N. (2010). Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. The journal of general and applied microbiology, 56(3), 231-239. https://doi.org/10.2323/jgam.56.231
Zhang, M., Cheung, P. C., Zhang, L., Chiu, C. M. (2004). Carboxymethylated β-glucans from mushroom sclerotium of Pleurotus tuber-regium as novel water-soluble antitumor agent. Carbohydrate polymers, 57(3), 319-325.
Zou, G., Nielsen, J. B., Wei, Y. (2023). Harnessing synthetic biology for mushroom farming. Trends in Biotechnology, 41(4), 480-493.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Scientia Agropecuaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).