Coctel de bacteriófagos como sustituto de promotores de crecimiento tipo antibiótico en avicultura
DOI:
https://doi.org/10.17268/sci.agropecu.2021.054Palavras-chave:
microbiota intestinal, resistencia antimicrobiana, fago-resistencia, terapia de fagos, Salmonella spp., E. coliResumo
La industria avícola se ve en la obligación de encontrar alternativas que sustituyan a los promotores de crecimiento de tipo antibiótico para reducir la resistencia antimicrobiana. Entre dichas alternativas tenemos a los bacteriófagos que son los depredadores naturales de las bacterias; sin embargo, las investigaciones realizadas apuntan a su utilización como terapéuticos y no como promotores de crecimiento. Por tal motivo, el presente artículo de revisión se enfoca en discutir y proyectar el empleo de cocteles de bacteriófagos líticos como promotores de crecimiento en crianzas comerciales de pollos de engorde, gallinas de postura y codornices. Evaluando sus efectos sobre los parámetros productivos, su aplicación en agua de bebida y alimento, las estrategias de protección de fagos sobre los cambios de pH gastrointestinal y las altas temperaturas de peletización, estrategias contra la fago-resistencia, sus efectos sobre la microbiota intestinal, y el uso de autofagos versus los productos comerciales. Se concluye que la utilización óptima de bacteriófagos en avicultura comercial es mediante cocteles mixtos de autofagos líticos protegidos. Finalmente, se recomienda comparar el uso de cocteles mixtos de autofagos líticos con cocteles mixtos de fagos comerciales que existen en el mercado; adicionalmente, se debe evaluar la combinación de cocteles mixtos de autofagos líticos protegidos con otras alternativas como probióticos, prebióticos, aceites esenciales y ácidos orgánicos y comparar dicha combinación con el uso de antibióticos promotores de crecimiento.
Referências
Ackerman, H. (2011). Bacteriophage taxonomy. Microbiol Aust. 32(2), 90–94.
Ahmadi, M., Torshizi, M. A., Rahimi, S., & Dennehy, J. J. (2016). Prophylactic Bacteriophage Administration More Effective than Post-infection Administration in Reducing Salmonella enterica serovar Enteritidis Shedding in Quail. Frontiers in Microbiology, 7, 1253-1262.
Amato, H. K., Wong, N. M., Pelc, C., Taylor, K., Price, L. B., et al. (2020). Effects of concentrated poultry operations and cropland manure application on antibiotic resistant Escherichia coli and nutrient pollution in Chesapeake Bay watersheds. Science of The Total Environment, 735, 139401.
Assafi, M. S., Hado, H. A., & Abdulrahman, I. S. (2020). Detection of methicillin-resistant Staphylococcus aureus in broiler and broilers farm workers in Duhok, Iraq by using conventional and PCR techniques. Iraqi J Vet Sci, 34(1), 15-22.
Bae, D., Lee, J.-W., Chae, J.-P., Kim, J.-W., Eun, J.-S., et al. (2021). Characterization of a novel bacteriophage φCJ22 and its prophylactic and inhibitory effects on necrotic enteritis and Clostridium perfringens in broilers. Poultry Science, 100(1), 302-313.
Brockhurst, M. A., Koskella, B., & Zhang, Q.-G. (2017). Bacteria-Phage Antagonistic Coevolution and the Implications for Phage Therapy. In: Bacteriophages Ed. por D. Harper, S., Abedon, B., Burrowes, M. McConville. Springer International Publishing. Pp. 1–21.
Carvalho, C. M., Gannon, B. W., Halfhide, D. E., Santos, S. B., Hayes, C. M., et al. (2010). The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiology, 10(1), 232-343.
Castillo, D., Christiansen, R. H., Dalsgaard, I., Madsen, L., & Middelboe, M. (2015). Bacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: Linking genomic mutations to changes in bacterial virulence factors. Applied and Environmental Microbiology, 81(3), 1157-1167.
Castillo, D., Rørbo, N., Jørgensen, J., Lange, J., Tan, D., et al. (2019). Phage defense mechanisms and their genomic and phenotypic implications in the fish pathogen Vibrio anguillarum. FEMS Microbiology Ecology, 95(3), 1-13.
CJBIO - CheilJedang Research Institute of Biotechnology. (2020). Biotector®. Disponible en: https://www.cjbio.net/en/products/biotector.do
Clavijo, V., Baquero, D., Hernandez, S., Farfan, J. C., Arias, J., et al. (2019). Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poultry Science, 98(10), 5054–5063.
Colom, J., Cano-Sarabia, M., Otero, J., Cortés, P., Maspoch, D., & Llagostera, M. (2015). Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl Environ Microbiol, 81(14), 4841– 4849.
Colomer-Lluch, M., Jofre, J., & Muniesa, M. (2011). Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One, 6(3), -e17549.
ESVAC. (2017). Sales of veterinary antimicrobial agents in 30 european countries in 2015. Trends from 2010 to 2015. Available at https://www.ema.europa.eu/en/documents/report/seventh-esvac-report-sales-veterinary-antimicrobial-agents-30-european-countries-2015_en.pdf
Fischer, S., Kittler, S., Klein, G., & Glünder, G. (2013). Impact of a Single Phage and a Phage Cocktail Application in Broilers on Reduction of Campylobacter jejuni and Development of Resistance. PLoS ONE, 8(10), e78543.
Gebru, E., Lee, J. S., Son, J. C., Yang, S.Y., Shin, S. A., et al. (2010). Effect of probiotic-, bacteriophage-, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium. Journal of Animal Science, 88(12), 3880–3886.
Guibourdenche, M., Roggentin, P., Mikoleit, M., Fields, P. I., Bockemühl, J., et al. (2010). Supplement 2003–2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Research in Microbiology, 161(1), 26-29.
Hong, S., Jeong, J., Lee, J., Kim, S., Min, W., & Myung, H. (2013). Therapeutic Effects of Bacteriophages Against Salmonella gallinarum Infection in Chickens. J. Microbiol. Biotechnol, 23(10), 1478–1483.
Hoque, M. M., Naser, I. B., Bari, S. M. N., Zhu, J., Mekalanos, J. J., & Faruque S. M. (2016). Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages. Scientific Reports, 6(1), 37956.
Hubbard, L. E., Givens, C. E., Griffin, D. W., Iwanowicz, L. R., Meyer, M. T., & Kolpin, D. W. (2020). Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. Science of The Total Environment. 735, 139459.
Intralytix Inc. (2020). INT-401™. Disponible en: http://www.intralytix.com/index.php?page=vet
Kaikabo, A., AbdulKarim, S., & Abas, F. (2016). Evaluation of the efficacy of chitosan nanoparticles loaded ΦKAZ14 bacteriophage in the biological control of colibacillosis in chickens. Poultry Science, 96(2), 295–302.
Kim, J. H., Kim, J. W., Lee, B. B., Lee, G. I., Lee, J. H., et al. (2014). Effect of dietary supplementation of bacteriophage on growth performance and cecal bacterial populations in broiler chickens raised in different housing systems. Livestock Science, 170, 137–141.
Kim, J. S., Hosseindoust, A., Lee, S. H., Choi, Y. H., Kim, M. J., et al. (2017). Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium. Animal, 11(01), 45–53.
Kim, K. H., Lee, G. Y., Jang, J. C., Kim J., & Kim, Y. (2013). Evaluation of Anti-SE Bacteriophage as Feed Additives to Prevent Salmonella Enteritidis (SE) in Broiler. Asian-Aust. J. Anim. Sci, 26(3), 386-393.
Kittler, S., Mengden, R., Korf, I. H. E., Bierbrodt, A., Wittmann, J., et al. (2020). Impact of Bacteriophage-Supplemented Drinking Water on the E. coli Population in the Chicken Gut. Pathogens, 9(4), 293.
Laanto, E., Bamford, J. K. H., Laakso, J., & Sundberg, L.-R. (2012). Phage-Driven Loss of Virulence in a Fish Pathogenic Bacterium. PLOS ONE, 7(12), e53157.
Malone, L. M., Warring, S. L., Jackson, S. A., Warnecke, C., Gardner, P. P., et al. (2020). A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nature Microbiology, 5, 48-55.
Mazhar, S. H., Li, X., Rashid, A., Su, J., Xu, J., et al. (2020). Co-Selection of Antibiotic Resistance Genes, and Mobile Genetic Elements in the presence of Heavy Metals in Poultry Farm Environments. Science of The Total Environment, 2, 142702.
Micromir - RPC Micromir. (2020). Phagovet®. Disponible en: https://micromir.bio/phagovet
Miller, R. W., Skinner, J., Sulakvelidze, A., Mathis, G. F., & Hofacre, C. L. (2010). Bacteriophage Therapy for Control of Necrotic Enteritis of Broiler Chickens Experimentally Infected with Clostridium perfringens. Avian Diseases, 54(1), 33-40.
Mion, S., Plener, L., Rémy, B., Daudé, D., & Chabrière, É. (2019a). Lactonase SsoPox modulates CRISPR-Cas expression in gram-negative proteobacteria using AHL-based quorum sensing systems. Research in Microbiology, 170(6), 296-299.
Mion, S., Rémy, B., Plener, L., Brégeon, F., Chabrière, E., & Daudé, D. (2019b). Quorum Quenching Lactonase Strengthens Bacteriophage and Antibiotic Arsenal Against Pseudomonas aeruginosa Clinical Isolates. Front. Microbiol, 10, 2049.
Moawad, A. A., Hotzel, H., Awad, O., Tomaso, H., Neubauer, H., et al. (2017). Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathogens, 9(57), 1-13.
Munsch-Alatossava, P., & Alatossava, T. (2013). The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808. Front Microbiol, 4, 408.
Ngamwongsatit, B., Tanomsridachchai, W., Suthienkul, O., Urairong, S., Navasakuljinda, W., & Janvilisri, T. (2016). Multidrug resistance in Clostridium perfringens isolated from diarrheal neonatal piglets in Thailand. Anaerobe, 38, 88–93.
Parry-Hanson, K. A., Otwey, R. Y., & Mosi, L. (2020). Microbiological quality and Salmonella prevalence, serovar distribution and antimicrobial resistance associated with informal raw chicken processing in Accra, Ghana. Food Control, 118, 107440.
Proteonpharma – Proteon Pharmaceuticals. (2020). Bafasal®. Disponible en: https://www.proteonpharma.com/products/bafasal-poultry/
Pulido-Landínez, M., Washington, P., Thornton, J. K., Zhang, Y., Sánchez-Ingunza, R., et al. (2013). Serotype and Antimicrobial Resistance Patterns of Salmonella Isolates from Commercial Birds and Poultry Environment in Mississippi. Avian Diseases, 58(1), 64-70.
Quiroz-Guzmán, E., Peña-Rodriguez, A., Vázquez-Juárez, R., Barajas-Sandoval, D. R., Balcázar, J. L., & Martínez-Díaz, S. F. (2018). Bacteriophage cocktails as an environmentally-friendly approach to prevent Vibrio parahaemolyticus and Vibrio harveyi infections in brine shrimp (Artemia franciscana) production. Aquaculture, 492, 273–279.
Richards, P. J., Connerton, P. L., & Connerton, I. F. (2019). Phage Biocontrol of Campylobacter jejuni in Chickens Does Not Produce Collateral Effects on the Gut Microbiota. Front. Microbiol, 10, 476-486.
Santos, S., Costa, A., Carvalho, C., Nóbrega, F., & Azeredo, J. (2018). Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential. Trends in Biotechnology, 36(9), 966-984.
Schulz, P., Robak, S., Dastych, J., & Siwicki, A. K. (2018). Influence of bacteriophages cocktail on European eel (Anguilla anguilla) immunity and survival after experimental challenge. Fish Shellfish Immun. 84, 28-37.
Seo, B.-J., Song, E.-T., Lee, K., Kim, J.-W., Jeong, C.-G., et al. (2018). Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium. Journal of Veterinary Medical Science, 80(6), 851-860.
Sevilla-Navarro, S., Marín, C., Cortés, V., García, C., Vega, S., & Catalá-Gregori, P. (2018). Autophage as a control measure for Salmonella in laying hens. Poultry Science, 97(12), 4367-4373.
Sørensen, M. C. H., Gencay, Y. E., Birk, T., Baldvinsson, S., Jäckel, C., & Hammerl, J. (2015). Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages. PLoS ONE, 10(1), e0116287.
Tie, K., Yuan, Y., Yan, S., Yu, X., Zhang, Q., et al. (2018). Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea. Virus Genes, 54(3), 446–456.
Upadhaya, S. D., Ahn, J. M., Cho, J. H., Kim, J. Y., Kang, D. K., et al. (2021). Bacteriophage cocktail supplementation improves growth performance, gut microbiome and production traits in broiler chickens. Journal of Animal Science and Biotechnology, 12(1), 49.
Wang, C., Li, P., Niu, W., Yuan, X., Liu, H., Huang, Y., et al. (2019). Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Research in Microbiology, 170(3), 156-164.
Wang, J. P., Yan, L., Lee, J. H., & Kim, I.H. (2013). Evaluation of Bacteriophage Supplementation on Growth Performance, Blood Characteristics, Relative Organ Weight, Breast Muscle Characteristics and Excreta Microbial Shedding in Broilers. Asian-Australas J Anim Sci, 26(4), 573-578.
Weinbauer, M. (2004). Ecology of prokaryotic viruses. FEMS Microbiol Rev, 28(2), 127–181.
Welsh, J. E., Steenhuis, P., de Moraes, K. R., van der Meer, J., Thieltges, D. W., & Brussaard, C. P. D. (2020). Marine virus predation by non-host organisms. Scientific Reports, 10, 5221.
Wipf, J., Schwendener, S., & Perreten, V. (2014). The novel macrolide-lincosamide-streptogramin B resistance gene erm (44) Is associated with a prophage in Staphylococcus xylosus. Antimicrob. Agents Chemother, 58, 6133–6138.
Wójcik, E. A., Stańczyk, M., Wojtasik, A., Kowalska, J. D., Nowakowska, M., Łukasiak, M., et al. (2020). Comprehensive Evaluation of the Safety and Efficacy of BAFASAL® Bacteriophage Preparation for the Reduction of Salmonella in the Food Chain. Viruses, 12(7): 742-769.
Zhao, P. Y., Baek, H. Y., & Kim, I. H. (2012). Effects of Bacteriophage Supplementation on Egg Performance, Egg Quality, Excreta Microflora, and Moisture Content in Laying Hens. Asian-Australasian Journal of Animal Sciences, 25(7), 1015–1020.
Zwe, Y., Tang, V., Aung, K., Gutiérrez, R., Ng, L., & Yuk, H-G. (2018). Prevalence, sequence types, antibiotic resistance and, gyrA mutations of Salmonella isolated from retail fresh chicken meat in Singapore. Food Control, 90, 233–240.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 C. E. Honorio-Javes, Y. Vallenas-Sánchez, J. T. Bazán Pérez
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).