Impacto del régimen pluvial en la composición química, digestibilidad y producción de metano de Echinochloa polystachya (Kunth) Hitch

Autores

  • Medardo Díaz-Céspedes Universidad Nacional Agraria La Molina, Av. La Molina s / n, La Molina, Lima. Universidad Nacional Agraria de la Selva, Carretera Tingo María - Huánuco km 1.21, Po Box 156 Tingo, Rupa Rupa, Leoncio Prado, Huánuco. http://orcid.org/0000-0003-0134-8239
  • José Hernández-Guevara Universidad Nacional Agraria de la Selva, Carretera Tingo María - Huánuco km 1.21, Po Box 156 Tingo, Rupa Rupa, Leoncio Prado, Huánuco. http://orcid.org/0000-0002-5919-8408
  • Carlos Gómez-Bravo Universidad Nacional Agraria La Molina, Av. La Molina s / n, La Molina, Lima. http://orcid.org/0000-0001-9021-5838

DOI:

https://doi.org/10.17268/sci.agropecu.2020.02.01

Palavras-chave:

precipitación pluvial, pastura tropical, pasto Alemán, calidad nutritiva, metano in vitro, producción de gases

Resumo

El objetivo de este estudio fue determinar la composición química, digestibilidad y la producción de metano de Echinochloa polystachya (Kunth) Hitch en periodos con diferente precipitación pluvial en la región de la selva del Perú. La pastura fue manejada bajo un sistema de pastoreo rotativo. La calidad nutritiva y producción de metano in vitro durante ambos periodos experimentales se determinó a partir de muestras obtenidas por la técnica de zigzag y puntos de muestreo utilizando el método de muestreo destructivo sistemático. En el periodo de menor precipitación pluvial, el pasto Echinochloa polystachya tuvo un mayor contenido de fibra detergente neutro (FDN) (p < 0,001) y fibra detergente ácido (FDA) (p < 0,001). La materia orgánica (MO) fue mayor en el periodo de mayores precipitaciones (p < 0,001); sin embargo, el contenido de proteína cruda (PC) (p = 0,11), digestibilidad in vitro de MO (p = 0,89), producción neta de gas corregida (p = 0,83) y la producción in vitro de CH4 (p = 0,63) fueron similares para ambos periodos.

Referências

Association of Official Analytical Chemists (AOAC). 2006. Association of the Association of Official Analytical Chemists, 15th ed. Association of Official Analytical Chemists, Virginia, USA. 770-771 pp.

Barahona, R.; Sánchez, S. 2005. Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Ciencia y Tecnología Agropecuaria 6(1): 69-82.

Baruch, Z. 1994. Response to drought and flooding in tropical forage grasses. II. Leaf water potencial, photosynthesis rate and alcohol dehydrogenase activity. Plant and Soil 164: 97-105.

Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; et al. 2020. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal. 14: S1, pp s2–s16.

Bedoya-Mazo, S; Noguera, R.R.; Posada, S. L. 2016. Efecto de la especie donadora de inóculo ruminal sobre la degradación de la materia seca y producción de metano in vitro. Livestock Research for Rural Development 28(5): 86.

Carriel, P.H. 2014. Estudio del comportamiento agronómico de cuatro variedades de pastos sometidos a distanciamientos de siembra en la zona de Pueblo Viejo. Tesis de Licenciatura, Universidad Técnica de Babahoyo, provincia de Los Ríos, Ecuador. 51 pp.

Del Pozo, R.P.P. 2002. Bases ecofisiológicas para el manejo de los pastos tropicales. Pastos: Revista de la Sociedad Española para el Estudio de los Pastos 32(2): 109-137.

Demarchi, J.; Manella, M.; Primavesi, O.; et al. 2016. Effect of Seasons on Enteric Methane Emissions from Cattle Grazing Urochloa brizantha. Journal of Agricultural Science 8(4): 106-115.

Di Rienzo, J.A.; Casanoves, F; Balzarini, M.G.; et al. 2018. InfoStat versión 2018 Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Disponible en: http://www.infostat.com.ar

du Toit, C.J.L.; van Niekerk, W.A.; Meissner, H.H.; et al. 2018. Nutrient composition and in vitro methane production of sub-tropical grass species in transitional rangeland of South Africa. The Rangeland Journal 40: 1-8.

e Silva, L.C.; Engle, T.E.; Valadares Filho, S.C.; et al. 2015. Intake, apparent digestibility, and nutrient requirements for growing Nellore heifers and steers fed two levels of calcium and phosphorus. Livestock Science 181: 17-24.

Gutiérrez, D.; Rojas, E.B.; Hernández, R.R.; et al. 2015. Evaluación de la composición química y degradabilidad ruminal in situ de ensilaje mixto con Pennisetum purpureum cv Cuba CT-169: Moringa oleifera. Avances en Investigación Agropecuaria 19(3): 7-16.

Hammond, K.J.; Crompton, L.A.; Bannink, A.; et al. 2016. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Animal Feed Science and Technology 219: 13-30.

Hatew, B.; Cone, J.; Pellikaan, W.F.; et al. 2015. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Animal Feed Science and Technology 202: 20-31.

Heuzé, V.; Tran, G.; Giger-Reverdin, S.; et al. 2017. German grass (Echinochloa polystachya). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. Disponible en: https://www.feedipedia.org/node/449

Jiménez, Á.; Jiménez, G.; Alayón, A.; et al. 2019. Fermentación ruminal y producción de metano usando la técnica de gas in vitro en forrajes de un sistema silvopastoril de ovinos de Chiapas, México. Revista Mexicana de Ciencias Pecuarias 10(2): 298-314.

Jonker, A.; Molano, G.; Koolaard, J.; et al. 2017. Methane emissions from lactating and non-lactating dairy cows and growing cattle fed fresh pasture. Animal Production Science 57: 643–648.

Kasuya, H.; Takahashi, J. 2010. Methane emissions from dairy cows fed grass or legume silage. Asian-Australasian Journal Animal Science 23: 563-566.

Khan, N.A.; Rahman, S.U.; Cone, J.W. 2020. Chemical composition, ruminal degradation kinetics and methane production (In vitro) potential of local and exotic grass species grown in Peshawar. Pak. J. Bot. 52(1): 161-166.

Knapp, J.; Laur, G.; Vadas, P.; et al. 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science 97: 3231–3261.

Lalman, D. 2017. Nutritive value of feeds for beef cattle. Fact sheet ANSI-3018. Stillwater, OK: Oklahoma State University Cooperative Extension Service. Disponible en: http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-1955/ANSI-3018web.pdf

Meale, S.J.; Chaves, A.V.; Baah, J.; et al. 2012. Methane production of different forages in in vitro ruminal fermentation. Asia-Australia Journal of Animal Science 25(1): 86-91.

Melgarejo, L.G. 2017. Muestreo de forraje. In Practicas de producción y aprovechamiento de forrajes. Primera ed. Editorial UNAM. Ciudad de México, México. Pp. 38-56.

Menke, K.; Raab, L.; Salewski, A.; et al. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding-stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science (Camb.) 93: 217-222.

Merlo, F.E.; Ramírez, L.; Ayala, A.J.; et al. 2017. Efecto de la edad de corte y la época del año sobre el rendimiento y calidad de Brachiaria brizantha (A. Rich.) Staff en Yucatán, México. Journal of the Selva Andina Animal Science 4(2): 116-127.

Mirzaei, A.; Maheri-Sis, N. 2015. Factors affecting mitigation of methane emission from ruminants: Microbiology and biotechnology strategies. JABB-Online Submission System 4(1): 22-31.

Montenegro, J.; Barrantes, E.; DiLorenzo, N. 2018. Determinación de la emisión de metano entérico de novillos Brahman en pastoreo en el ecosistema de bosque tropical seco de Costa Rica. Revista de Ciencias Ambientales 52(2): 157-170.

Muñoz, C.; Hube, S.; Morales, J.; et al. 2015. Effects of concentrate supplementation on enteric methane emissions and milk production of grazing dairy cows. Livestock Science 175: 37-46.

Navarro-Villa, A.; O’brien, M.; López, S.; et al. 2011. Modifications of a gas production technique for assessing in vitro rumen methane production from feedstuffs. Anim. Feed Sci. Technol. 166: 163–174.

National Academies of Sciences, Engineering, and Medicine (NASEM). 2016. Nutrient Requirements of Beef Cattle: Eighth Revised Edition. Washington, DC: The National Academies Press. 494 pp.

Noguera, R.R.; Ramírez, J.F.; Posada, S.L. 2016. Efecto de la concentración de proteína cruda en suplementos para vacas lecheras sobre la degradación de la materia seca in vitro. Livestock Research for Rural Development 28(8): #148.

Palmonari, A.; Gallo, A.; Fustini, M.; et al. 2016. Estimation of the indigestible fiber in different forage types. Journal of Animal Science 94(1): 248-254.

Poppi, D.; McLennan, S. 1995. Protein and Energy utilization by ruminants at pasture. Journal of Animal Science 73: 278-290.

Redfearn, D.D.; Zhang, H.; Caddel, J.L. 2004. Forage quality interpretations. Division of Agricultural Sciences and Natural Resources, Oklahoma State University. Disponible en: http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Rendition-7139/PSS-2117web.pdf

Rivera, J.E.; Molina, I.C.; Donneys, G.; et al. 2015. Dinámicas de fermentación y producción in vitro de metano en dietas de sistemas silvopastoriles intensivos con L. leucocephala y sistemas convencionales orientados a la producción de leche. Livestock Research for Rural Development 27(4): 1-15.

Senger, C.C.D.; Kozloski, G.V.; Sanchez, L.M.B.; et al. 2008. Evaluation of autoclave procedures for fiber analysis in forage and concentrate feedstuffs. Animal Feed Science and Technology 146: 169-174.

Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). 2017. Boletín Agrometeorológico. Dirección Zonal 10. Disponible en: http://www.senamhi.gob.pe/load/file/04410SENA-14.pdf

Soto, S.; Rodríguez, J.C.; Russo, R. 2009. Digestibilidad in vitro en forrajes tropicales a diferentes edades de rebrote. Revista Tierra Tropical 5(1): 83-89.

Valente, T.N.P.; da Silva Lima, E.; Gomes, D.I.; et al. 2016. Anatomical differences among forage with respect to nutrient availability for ruminants in the tropics: A review. African Journal of Agricultural Research 11(18): 1585-1592.

Van Soest, P.J.; Robertson, J.; Lewis, B. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal Dairy Science 74: 3583-3597.

Vera, D. 2014. Respuesta del Pasto Alemán (Echinocloa polystachya) a tres láminas de riego, en la parroquia San Antonio, provincia de Manaví. Tesis de Maestría. Universidad de las Fuerzas Armadas ESPE. provincia de Manaví, Ecuador. 88 pp.

Yan, T.; Agnew, R.E. 2004. Prediction of nutritive value in grass silages: I. Nutrient digestibility and energy concentration using nutrient composition and fermentation characteristics. J Anim Sci 82: 1367-1379.

Yan, T.; Mayne, C.S.; Gordon, F.G.; et al. 2010. Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. Journal of Dairy Science 93(6): 2630-2638.

Yusuf, A.O.; Egbinola, O.O.; Ekunseitan, D.A., Salem, A.Z.M. 2020. Chemical characterization and in vitro methane production of selected agroforestry plants as dry season feeding of ruminants livestock. Agroforestry Systems (In press).

Publicado

2020-06-08

Como Citar

Díaz-Céspedes, M., Hernández-Guevara, J., & Gómez-Bravo, C. (2020). Impacto del régimen pluvial en la composición química, digestibilidad y producción de metano de Echinochloa polystachya (Kunth) Hitch. Scientia Agropecuaria, 11(2), 147-155. https://doi.org/10.17268/sci.agropecu.2020.02.01

Edição

Seção

Artículos originales