Microbiological indicators of tropical soils quality in ecosystems of the north-east area of Peru

Autores

DOI:

https://doi.org/10.17268/sci.agropecu.2019.02.07

Palavras-chave:

Microbial soil activity, changes in land use, principal component analysis, microbial biomass.

Resumo

Tropical soils withstand heavy pressure due to deforestation as a result of the change in land use, decreasing their quality. Traditionally, the quality of soil has been based on physical and chemical indicators; however, the biological ones can predict variations in the quality, in an early and effective way. In this research, the microbiological quality of soils from two ecosystems was evaluated, one from the Cumbaza Sub-Basin (CSB) and the other from Degraded Pastures at Cuñumbuque (DPC), both in San Martín, Peru. The physicochemical characteristics were studied and the microbial populations of Total Bacteria (TB), Sporulated Bacteria (SB), Total Fungi (TF), Actinobacteria (ACT), and parameters of microbial activity such as Basal Respiration (BR), Microbial Biomass (MB), Metabolic Quotient (qCO2) and Microbial Quotient (qMIC). According to the Principal Component Analysis (PCA), the soils of the CSB had on average a lower biological quality compared to the DPC soils. The PCA discriminated that the microbial populations of TB, SB, ACT and MB represented effective microbiological indicators to evaluate the quality of the soils, in this respect the soils of Shapumba, Chontal, Aucaloma and Vista Alegre are degraded and require the application of new technologies and public policies for their recovery.

Referências

Alef, K. 1995. Soil respiration. p. 225-227. In: Alef K.; Nanipieri, P. eds. Methods in applied soil Microbiology and biochemistry. London: Academic Press.

Anderson, J.P.E.; Domsch, K.H. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 215-221.

Araújo, A.S.F.; Cesarz, S.; Leite, L.F.C.; Borges, C.D.; Tsai, S.M.; Eisenhauer, N. 2013. Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil Biology and Biochemistry 66: 175-181.

Ashaduzzaman, S.M.; Tipayno, S.C.; Kim, K.; Chung, J.B.; Sa, T. 2011. Influence of varying degree of salinity-sodicity stress on enzyme activities and bacterial populations of coastal soils of Yellow Sea, South Korea. Journal of Microbiology and Biotechnology 21: 341-346.

Assis, P.C.R.; Stone, L.F.; Silveira, A.L.R.D.; Oliveira, J.D.M.; Wruck, F J.; Madari, B. E. 2017. Biological Soil Properties in Integrated Crop-Livestock-Forest Systems. Revista Brasileira de Ciência do Solo, 41.

Azcón-Aguilar, C.; Barea, J.M. 2015. Nutrient cycling in the mycorrhizosphere. Journal of Soil Science and Plant Nutrition 15: 372-396.

Azevedo, R.R.; Santos, J.B.; Baretta, D.; Ramos, A.C.; Cardoso, E.J.B.N. 2017. Chemical and microbiological soil properties in organic and conventional management systems of Coffea arabica L. Journal of Plant Nutrition 40: 2076-2086.

Biswas, S.; Hazra, G.C.; Purakayastha, T.J.; Saha, N.; Mitran, T.; Roy, S.S.; Mandal, B. 2017. Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma 292: 34-48.

Borowik, A.; Wyszkowska, J.; Kucharski, J.; Baćmaga, M.; Tomkiel, M. 2017. Response of microorganisms and enzymes to soil conta-mination with a mixture of terbuthylazine, mesotrione, and S-metolachlor. Environ-mental Science and Pollution Research 24: 1910-1925.

Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mader, P.; Pulleman, M.; Sukkel, W.; van Groenigen, J.W.; Brussaard, L. 2018. Soil quality–A critical review. Soil Biology and Biochemistry 120: 105-125.

Burns, R.G.; De Forest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry 58: 216-234.

Canei, A.D.; Hernández, A.G.; Morales, D.M.L.; da Silva, E.P.; Souza, L.F.; Loss, A.; Lourenzi, C.R.; dos Reis, M.S.; Soares, C.R.F.S. 2018. Atributos microbiológicos e estrutura de comunidades bacterianas como indicadores da qualidade do solo em plantios florestais na mata atlántica. Ciência Florestal, Santa Maria 28: 1405-1417.

Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; Santos, C.A.; Alves, P.R.L.; Paula, A.M.; Nakatani, A.S.; Pereira, J.M.; Nogueira, M.A. 2013. Soil health: looking for suitable indicators. What should be consi-dered to assess the effects of use and management on soil health? Scientia Agrícola 70: 274-289.

Creamer, R.E.; Schulte, R.P.O.; Stone, D.; Gal, A.; Krogh, P.H.; Papa, G.L.; Murray, P.J.; Pérès, G.; Foerster, B.; Rutgers, M.; Sousa, J.P.; Winding, A. 2014. Measuring soil respiration across Europe: do incubation temperature and incubation period matter? Ecological Indicators 36: 409–418.

Ferreira, E.P.D.B.; Stone, L.F.; Martin-Didonet, C.C.G. 2017. Population and microbial activity of the soil under an agro-ecological production system. Revista Ciência Agronômica 48: 22-31.

Gabriel, K.R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58: 453-467.

Geisseler, D.; Scow, K.M. 2014. Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biology and Biochemistry 75: 54-63.

Gower, J.C.; Ross, G.J.S. 1969. Minimum spanning trees and single linkage cluster analysis. Applied Statistics 18: 54-64.

Horwath, W.R. 2017. The role of the soil microbial biomass in cycling nutrients. p. 41-66. In: Tate, K.R. ed. Microbial Biomass: A Paradigm Shift in Terrestrial Biogeochemistry. World scientific.

Hotelling, H. 1933. Analysis of a complex of sta-tistical variables into principal components. Journal of Educational Psychology 24(6): 417-441.

Insam, H.; Domsch, K.H. 1988. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial ecology 15: 177-188.

Insam, H.; Haselwandter, K. 1989. Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79: 174-178.

Jiang, Y.; Sun, B.; Jin, C.; Wang, F. 2013. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biology and Biochemistry 60: 1-9.

Kandeler, E. 2015. Physiological and biochemical methods for studying soil biota and their function. p. 53-83. In: Eldor, P. ed. Soil Microbiology, Ecology and Biochemistry Fourth Edition. Academic Press-Elsevier.

Karhu, K.; Auffret, M.D.; Dungait, J.A.; Hopkins, D.W.; Prosser, J.I.; Singh, B.K.; Gouriveau, F. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513: 81.

Kaschuk, G.; Alberton, O.; Hungria, M. 2010. Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biology and Biochemistry 42: 1-13.

Kunito, T.; Isomura, I.; Sumi, H.; Park, H.D.; Toda, H.; Otsuka, S.; Nagaoka, K.; Saeki, K.; Senoo, K. 2016. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biology and Biochemistry 97: 23-30.

Kumar, U.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Bhattacharyya, P.; Jambhulkar, N.N. 2017. Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecological Indicators 73: 536-543.

Lai, L.; Zhao, X.; Jiang, L.; Wang, Y.; Luo, L.; Zheng, Y.; Chen, X.; Rimmington, G. M. 2012. Soil respiration in different agricultural and natural ecosystems in an arid region. PloS one 7(10): e48011.

Lammel, D.R.; Azevedo, L.C.B.; Paula, A.M.; Armas, R.D.; Baretta, D.; Cardoso, E.J.B.N. 2015. Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil. Brazilian Journal of Biology 75: 894-905.

Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75: 5111-5120.

Mooshammer, M.; Wanek, W.; Hämmerle, I.; Fuchslueger, L.; Hofhansl, F.; Knoltsch, A.; Schnecker, J.; Takriti, M.; Watzka, M.; Wild, B.; Keiblinger, K.M.; Zechmeister-Bolten-stern, S.; Richter, A. 2014. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature communications 5: 3694.

Navarrete, A.A.; Tsai, S.M.; Mendes, L.W.; Faust, K.; de Hollander, M.; Cassman, N.A.; Raes, J.; van Veen, J.A.; Kuramae, E.E. (2015). Soil microbiome responses to the short‐term effects of Amazonian deforestation. Mole-cular ecology 24: 2433-2448.

Oliveira, S.P.; Cândido, M.J.D.; Weber, O.B.; Xavier, F.A.S.; Escobar, M.E.O.; Oliveira, T. S. 2016a. Conversion of forest into irrigated pasture I. Changes in the chemical and biological properties of the soil. Catena 137: 508-516.

Oliveira, S. P., Cândido, M. J. D., Weber, O. B., Xavier, F. A. S., Escobar, M. E. O., & Oliveira, T. S. 2016b. Conversion of forest into irrigated pasture II. Changes in the physical properties of the soil. Catena 143, 70-77.

Paz-Ferreiro, J.; Fu, S. 2016. Biological indices for soil quality evaluation: Perspectives and limitations. Land Degradation & Development 27: 14-25.

Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11: 789-799.

Pietri, J.C.-A.; Brookes, P.C. 2008. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology and Biochemistry 40: 1856-1861.

Pietri, J.A.; Brookes, P.C. 2009. Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil. Soil Biology and Biochemistry 41: 1396-1405.

Qinling, Z.; Zhanbin, L.; Ying, L. 2018. Study of Soil Microbiological Character at Different Altitudes in the Region of Dry and Hot River Valley. Nature Environment and Pollution Technology 17: 1-10.

Rampelotto, P.H.; de Siqueira F.A.; Barboza, A.D.M.; Roesch, L.F.W. 2013. Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems. Microbial Ecology 66: 593-607.

Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.; Oves, M. 2016. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research 183: 26-41.

Ríos-Ruiz, W.F.; Barrios-López, L.; Rojas-García, J.C.; Valdez-Nuñez, R.A. 2019. Mycotrophic capacity and diversity of native arbuscular mycorrhizal fungi isolated from degraded soils. Scientia Agropecuaria 10: 99-108.

Santos, C.A.D.; Krawulski, C.C.; Bini, D.; Goulart Filho, T.; Knob, A.; Medina, C.C.; Filho, G.A.; Nogueira, M.A. 2015. Reclamation status of a degraded pasture based on soil health indicators. Scientia Agrícola 72: 195-202.

Signor, D.; Deon, M.D.I.; Camargo, P.B.D.; Cerri, C.E.P. 2018. Quantity and quality of soil organic matter as a sustainability index under different land uses in Eastern Amazon. Scientia Agricola 75: 225-232.

Silva, A.O.; da Costa, A.M.; Teixeira, A.F.S.; Guimarães, A.A.; dos Santos, J.V.; Moreira, F.M.S. 2018. Soil microbiological attributes indicate recovery of an iron mining area and of the biological quality of adjacent phyto-physiognomies. Ecological Indicators 93: 142–151.

Singh, K.; Trivedi, P.; Singh, G.; Singh, B.; Patra, D.D. 2016. Effect of different leaf litters on carbon, nitrogen and microbial activities of sodic soils. Land Degradation & Development 27: 1215-1226.

Soil Survey Staff. 2014. Soil survey field and laboratory methods manual. Soil survey investigations Report No. 51, Version 2.0, R. Burt and Soil Survey Staff. ed. U.S. Depart-ment of Agriculture, Natural Resources Conservation Service.

Soil Survey Staff. 2015. Illustrated guide to soil taxonomy. USDA-Natural Resources Conser-vation Service, National Soil Survey Center, Lincoln, Nebraska. USA

Spurgeon, D.J.; Keith, A.M.; Schmidt, O.; Lammertsma, D.R.; Faber, J.H. 2013. Land-use and land-management change: relation-ships with earthworm and fungi communities and soil structural properties. BMC ecology 13: 46.

Silva, M.; Sales, A.; Magalhães-Guedes, K.; Ribeiro Dias, D.; Schwan, R.F. 2013. Brazilian Cerrado soil actinobacteria ecology. BioMed Research International ID 503805: 1-10.

USDA, Natural Resources Conservation Service Soils. 2018. Soil Texture Calculator. NRCS Soils. Available at: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167

Walkley, A.; Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38.

Xu, X.; Schimel, J.P.; Thornton, P.E.; Song, X.; Yuan, F.; Goswami, S. 2014. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models. Ecology Letters 17: 547-555.

Xu, X.; Schimel, J.P.; Janssens, I.A.; Song, X.; Song, C.; Yu, G.; Thornton, P. 2017. Global pattern and controls of soil microbial metabolic quotient. Ecological Monographs 87: 429-441.

Zagatto, M.R.G.; Pereira, A.P.A.; de Souza, A.J.; Pereira, R.F.; Baldesin, L.F.; Pereira, C.M.; Lopes, R.V.; Cardoso, E.J.B.N. 2019. Interactions between mesofauna, microbiolo-gical and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations. Forest Ecology and Management 433: 240-247.

Zhang, H.; Wang, R.; Chen, S.; Qi, G.; He, Z.; Zhao, X. 2017. Microbial taxa and functional genes shift in degraded soil with bacterial wilt. Scientific reports 7:39911.

Zhou, Z.; Zhang, Z.; Zha, T.; Luo, Z.; Zheng, J.; Sun, O.J. 2013. Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biology and Biochemistry 57: 135-143.

Received November 3, 2018.

Accepted April 28, 2019.

Corresponding author: wrios@unsm.edu.pe (W.F. Ríos-Ruiz).

Publicado

2019-07-09

Como Citar

Valdez-Nuñez, R., Rojas-García, J., & Ríos-Ruiz, W. (2019). Microbiological indicators of tropical soils quality in ecosystems of the north-east area of Peru. Scientia Agropecuaria, 10(2), 217-227. https://doi.org/10.17268/sci.agropecu.2019.02.07

Edição

Seção

Artículos originales

Artigos mais lidos pelo mesmo(s) autor(es)