Impact of Pseudomonas aeruginosa, white fungus waste, and nano fertilizer on pyrophosphatase activity, growth characteristics, and yield of stevia plant

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2025.027

Palabras clave:

Pyrophosphatase, nano zinc, P. aeruginosa, Stevia

Resumen

Aimed to know the effect of Pseudomonas aeruginosa bacteria, white fungus waste, and nano fertilizer on the pyrophosphatase enzyme, growth characteristics, and yield of stevia plants. The bacterial vaccine represented the first factor. It was added at two levels: B0 (without inoculum) and B1 (injecting 2 ml of liquid bio-inoculum represented by P. aeruginosa). The second factor was adding white fungus waste at three levels defined by Ab0 (without adding white mushroom waste), Ab1 (adding white mushroom waste at level 5 tons/h), and Ab2 (adding white mushroom waste at level 10 tons/h). Nano fertilizer was added as a third factor at four levels: N0 (without adding nano fertilizer), N1 (adding 4 kg/h of nano zinc), N2 (adding 2 kg/h of nano boron), and N3 (adding a mixture of 1 kg/h of nano boron + 2 kg/h of nano zinc). The triple combination B1Ab1N3 achieved a significant superiority in the activity of the pyrophosphatase enzyme in the first and second harvests and recorded (260.67 and 166.00) µg PO4-3-P/g soil 5/h, respectively, compared to the treatment without addition, which recorded (55.00 and 44.67) µg PO4-3-P/g soil 5/h, respectively. In contrast, the triple combination B1Ab2N3 achieved the highest growth and yield characteristics of the stevia plant and recorded the highest rate of plant height, dry weight of leaves and total yield, and recorded 83.90 and 76.00 cm/plant, 61.7 and 53.0 g/plant, 4933 and 4240 kg/h, respectively, compared to the treatment without addition, which recorded 68.98 and 60.63 cm/plant, 44.6 and 38.1 g/plant, 3563 and 3050 kg/h respectively.

Citas

Abdel-Dayem, M. A. M., Abdel-Aziz, S. M., El-Sawy, M. B., & Mottaleb S. A. (2020). Synergistic effects of zinc, boron, silicon and zeolite nanoparticles on salinity tolerance of potato plants. Agronomy, 10(1), 19. https://doi.org/10.3390/10010019

Adesemoye, A. O., & Ugoji, E. O. (2009). Evaluating Pseudomonas aeruginosa as plant growth-promoting rhizobacteria in West Africa. Arch. Phytopathol. Plant Prot., 42, 188–200. https://doi.org/10.1080/03235400601014791

Al-Hasnawi, A. H., & Jarallah, R. Sh. (2024). Effect of Sorghum and sunflower rhizosphere soil and the fertilization type on the total and active carbonate minerals percentage. AIP Conf. Proc., 3079, 020020. https://doi.org/10.1063/5.0202219

Al-Jubouri, E. A. K., & Al-Taweel, L. S. J. (2024). Zeolite, mineral fertilizer and humic acid impact on biomass carbon in soil. AIP Conf. Proc., 3079, 020026 . https://doi.org/10.1063/5.0207604

Al-Khalidi, R. J. H., & Al-Taweel, L. S. (2024). Effect of plant extracts and humic acid on soil ammonium content and Nitrosomonas numbers in potato-grown soil. IOP Conference: Earth Environ. Sci., 1371, 082009. https://doi.org/10.1088/1755-1315/1371/8/082009

Al-Rawi, K. M., & Abdul Aziz, M. K. A. (1980). Design and analysis of agricultural experiments. Ministry of Higher Education and Scientific Research. Dar Al-Kutub for Printing and Publishing. University of Mosul.

Al-Taweel, L. S., & Al-Budairy, Z. J. (2021). Influence of vermicompost, seaweed extract and nitrogen fertilisers on maize (Zea mays L.) soil rhizosphere microbes. Asian Journal of Water, Environment and Pollution, 18(3), 79-85. https://doi.org/10.3233/AJW210031

Al-Taweel, L. S., & Al-budairy, Z. J. (2024). Vermicompost, seaweed extracts, and urea impact on fungi numbers in maize rhizosphere soils (Zea mays L.). AIP Conf. Proc., 3079, 020009. https://doi.org/10.1063/5.0201957

Anindita, D. S. D., Riya, M., Atlanta, K., Prachujya, G., Soujit, K., & Heena, T. (2025). A comprehensive review of nano-fertilizers: their role in enhancing agricultural productivity and impacts on animals and soil microbiota. The Bioscan, 20(1), 93-101. https://doi.org/10.63001/tbs.2025.v20.i01.pp93-101

Aqeel, H., Sinan, N., Fouda, R., & Al-Hanity, A. (2023). Enzyme production and inhibitory capacity of Pseudomonas aeruginosa: Different clinical and environmental isolates. Antibiotics, 12(9), 1354. https://doi.org/10.3390/antibiotics12091354

Baptista, F., Almeida, M., Paié-Ribeiro, J., et al. (2023) Unlocking the potential of Spent Mushroom Substrate (SMS) for enhanced agricultural sustainability: From environmental benefits to poultry nutrition. Life, 13(10), 1948. https://doi.org/10.3390/life13101948

Becher, M., Banach-Szott, M., & Godlewska A. (2021). Organic matter properties of the substrate consumed by button mushrooms in the context of soil organic matter reproduction. Agronomy, 11(2), 204. https://doi.org/10.3390/agronomy11020204

Chandra, H., Kumari, P., Bisht, R., et al. (2020). Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Mol. Biol. Rep., 47, 6015–6026. https://doi.org/10.1007/s11033-020-05676-0

Chaudhary, P., Chaudhary, A., Bhatt, P., et al. (2022). Evaluation of soil health indicators under the influence of nanocomposites and Bacillus spp. in field conditions. Front. Environ. Sci., 9, 769871. https://doi.org/10.3389/fenvs.2021.769871

Daneshvar, N., Aber, S., Seyed, D., Khataei, M. S., & Rasoulifard, A. R. (2007). Preparation and study of photocatalytic properties of ZnO nanocrystals: Effect of operational parameters and kinetic study. International Journal of Quantum Nuclear Engineering, 1(5), 62-67.

Davarpanah, S., Tehranifar, A., Davarynejad, G., et al. (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pome-granate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic., 210, 57–64. https://doi.org/10.1016/j.scienta.2016.07.003

Dick, W. A., & Tabatabai, M. A. (1978). Inorganic pyrophosphatase activity of soils. Soil Biol. Biochem., 10, 59-65. https://doi.org/10.1016/0038-0717(79)90035-X

Domenech, C. E., Lisa, T. A., Salvano, M. A., & Garrido, M. N. (1992). Pseudomonas aeruginosa acid phosphatase. Activation by divalent cations and inhibition by aluminium ion. FEBS Lett., 299(1), 96-98. https://doi.org/10.1016/0014-5793(92)80108-S

Durairaj, K., Velmurugan, P., Park, J., et al. (2017). Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol. Lett., 364(23), fnx225. https://doi.org/10.1093/femsle/fnx225

Earanna, N. (2007). Response of Stevia rebaudiana to biofertilizers. Karnataka J. Agric. Sci., 20(3), 616-617. https://doi.org/10.3329/jbau.v16i1.36484

El-Hoseiny, H. M., Helaly, M. N., Elsheery, N. I., et al. (2020). Humic acid and boron to minimize the incidence of alternate bearing and improve the productivity and fruit quality of mango trees. Hort Science, 55, 1026–1037. https://doi.org/10.21273/hortsci15053-20

El-sheery, N. I., Helaly, M. N., El-Hoseiny, H. M., et al. (2020). Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy, 10(4), 558. https://doi.org/10.3390/agronomy10040558

Fan, Q., Li, N., Geng, Y., et al. (2025). Variation in soil enzyme activity with amendments of biochar and polyacrylamide in coal gangue soils. Sci Rep, 15, 4596. https://doi.org/10.1038/s41598-025-87920-w

Fernanda, C. C., Oliveira, A. B., Thomas, R. F., et al. (2025). Do soil enzymes respond to silvicultural management?, Forest Ecology and Management, 585, 122651. https://doi.org/10.1016/j.foreco.2025.122651

Frąc, M., Pertile, G., Panek, J., Gryta, A., et al. (2021). Composition and diversity of mycobiome under long-term application of spent mushroom substrate and chicken manure. Agronomy, 11(3), 410. https://doi.org/10.3390/agronomy11030410

Gaber, A., Refat, M. S., Belal, A. A. M., et al. (2021). New mononuclear and binuclear Cu(II), Co(II), Ni(II), and Zn(II) thiosemicarbazone complexes with potential biological activity: Antimicrobial and molecular docking study. Molecules, 26, 2288. https://doi.org/10.3390/molecules26082288

Gao, Y., Wu, Z., Li, W., Sun, H., Chai, Y., et al. (2023). Expanding the valorization of waste mushroom substrates in agricultural production: Progress and challenges. Environ. Sci. Pollut. Res., 30, 2355–2373. https://doi.org/10.1007/s11356-022-24125-y

Ghaheri, M., Miraghaee, S., Babaei, A., et al. (2018). Effect of Stevia rebaudiana Bertoni extract on sexual dysfunction in Streptozotocin induced diabetic male rats. Cellular and Molecular Biology, 64(2), 6-10. https://doi.org/10.14715/cmb/2018.64.2.2

Gorzi, A., & Omidi, H. (2020) Effects of chemical treatments (Iron, Zinc and Salicylic Acid) and soil water potential on Steviol Glycosides of stevia (Stevia rebaudiana Bertoni). Iran. J. Chem. Chem. Eng. Res. Artic., 39, 297–311. https://doi.org/10.30492/ijcce.2020.33123

Hoseini, R. Z., Goltapeh, E. M., & Kalatejari, S. (2015). Effect of bio-fertilizer on growth, development and nutrient content (leaf and soil) of Stevia rebaudiana Bertoni. J. Crop Prot, 4, 691-704. https://doi.org/10.1016/B978-0-323-95719-9.00015-X

Jain, P., Kachhwaha, S., & Kothari, S. L. (2014). Biotechnology and metabolic engineering of Stevia rebaudiana (Bert.) Bertoni: perspective and possibilities. International Journal of Life Sciences Biotechnology and Pharma Research, 3(3), 15.

Javed, R. (2018), Elicitation of secondary metabolites in callus cultures of stevia rebaudiana bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech., 20(2), 194-201. https://doi.org/10.1007/s12355-017-0539-1

Jonathan, S. G., Oyetunji, O. L., & Asemoloye, M. A. (2012). Influence of spent mushroom compost (SMC) of Pleurotus ostreatus on the yield and nutrient compositions of Telfairia occidentalis Hook. F.A. (Pumpkin). A Nigerian leafy vegetable Nature and Sci, 10, 149-156.

Joniec, J., Kwiatkowska, E., & Kwiatkowski, C. A. (2022). Assessment of the effects of soil fertilization with spent mushroom substrate in the context of microbial nitrogen transformations and the potential risk of exacerbating the greenhouse effect. Agriculture, 12, 1190. https://doi.org/10.3390/agriculture12081190

Kajander, T., Kellosalo, J., & Goldman, A. (2013). Inorganic pyropho-sphatases: One substrate, three mechanisms. FEBS Letters, 587, 1863-1869. https://doi.org/10.1016/j.febslet.2013.05.003

Karpiński, T. M., Marzena, K. P., Mark, S., Aleksandra, E., Mrozikiewicz, D. W., & Judyta, C. P. (2025). Activity of antiseptics against Pseudomonas aeruginosa and its adaptation potential. Antibiotics, 14, 30. https://doi.org/10.3390/antibiotics14010030

Kekeli, M., Annalisa, Q. W., & Yukui, R. (2025). The role of nano-fertilizers in sustainable agriculture: Boosting crop yields and enhancing quality. Plants, 14, 554. https://doi.org/10.3390/plants14040554

Khiraoui, A., Hasib, A., Al Faiz, C., Amchra, F., Bakha, M., & Boulli, A. (2017). Stevia rebaudiana Bertoni (Honey Leaf): A magnificent natural bio-sweetener, biochemical composition, nutritional and therapeutic values. Journal of Natural Sciences Research, 7(12), 75-85. https:// doi.org /core.ac.uk/reader/234657460

Kishore, G. K., Pande, S., Rao, J., N., & Podile, A. R. (2005). Pseudomonas aeruginosa inhibits the plant cell wall degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot. Eur J. Plant Pathol., 113, 315–320. https://doi:org/10.1007/s10658-005-0295-z

Kumar, A., Munder, A., Aravind, R., et al. (2013). Friend orfoe: Genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ. Microbiol., 15, 764-779. https://doi.org/10.1111/1462-2920.12031

Leong, Y. K., Ma, T. W., Chang, J. -S., & Yang, F. C. (2022). Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. Bioresour. Technol., 344, 126157. https://doi.org/10.1016/j.biortech.2021.126157

Martín, C., Zervakis, G. I., Xiong, S., et al. (2023). Spent substrate from mushroom cultivation: exploitation potential toward various applications and value-added products. Bioengineered, 14(1), 2252138. https://doi.org/10.1080/21655979.2023.2252138

Marzouk, N. M., Abd-Alrahman, H. A., et al. (2019). Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. Bull. Natl. Res. Cent., 43, 84. https://doi.org/10.1186/s42269-019-0127-5

Medina, E., Paredes, C., Pérez-Murcia, M. D., Bustamante, M. A., & Moral, R., (2009). Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol., 100(18), 4227–4232. https://doi.org/10. 1016/j.biortech.2009.03.055

Miladinova-Georgieva, K., Geneva, M., Stancheva, I., Petrova, M., Sichanova, M., & Kirova, E. (2023). Effects of different stimuli on micropropagation, biomass and production of secondary metabolites of Stevia rebaudiana Bertoni - A review. Plants, 12, 153. https://doi.org/10.3390/plants12010153

Momivand, H., Parisa, K., Mohammad, R. M., Edita, S., Kristina, J., Tomasz, H., & Hazem, M. K. (2021). Improvement of growth, yield, seed production and phytochemical properties of Satureja khuzistanica Jamzad by foliar application of boron and zinc. Plants, 10, 2469. https://doi.org/10.3390/plants10112469

Mubarik, N. R., Mahagiani, I., Anindyaputri, A., Santoso, S., & Rusmana, I. (2010). Chitinolytic bacteria isolated from chili rhizosphere: Chitinase characterization and its application as biocontrol for whitefly (Bemisia tabaci Genn.). Am. J. Agric. Biol. Sci., 5, 430-435. https://doi.org/10.3844/ajabssp.2010.430.435

Nooshin, A., Yasmin, H., Naz, R., Bano, A., Kiani, R., & Hussain, A. (2018). Pseudomonas putida improves soil enzyme activity and growth of Casumba under low amount of mineral fertilizers. Soil Science and Plant Nutrition, 64(4), 520-525. https://doi.org/10.1080/00380768.2018.1461002

Owaid, M .N., Abed, I. A., & Al-Saeedi, S. S. (2017). Applicable properties of the bio-fertilizer spent mushroom substrate in organic systems as a byproduct from the cultivation of Pleurotus spp. Info. Process.in Agric., 4(1), 78-82. https://doi.org/10.1016/j.inpa.2017.01.001

Pandey, P. K., Yadav, S. K., Singh, A., Sarma, B. K., Mishra, A., & Singh, H. B. (2012). Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09. J. Phytopathol., 160, 532–539. https://doi.org/10.1111/j.1439-0434.2012.01941.x

Panhwar, Q. A., Radziah, O., Khanev, Y. M., & Nahar, U. A. (2011). Application of boron and zinc in tropical soils and their effects on maize (Zea mays) growth and soil microbial ecology. Australian Journal of Crop Science, 5, 1649.

Paula, F. S., Tatti, E., Abram, F., Wilson, J., & O'Flaherty, V. (2017). Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment. J. Environ. Manag., 196, 476–486. https://doi.org/10.1016/j.jenvman.2017.03.038

Pramanik, P., Krishnan, P., Maity, A., Mridha, N., Mukherjee, A., & Rai, V. (2020). Application of Nanotechnology in Agriculture. In Environmental Nanotechnology, Springer International Publishing: Berlin/Heidelberg, Germany. Volume 4, pp. 317–348.

Ralia, R., & Tarafdar, J. C. (2013). Synthesis of zinc oxide nanoparticles and their effect on phosphorus mobilizing enzyme secretion and mucilage content in cluster bean (Cyamopsis tetragonoloba L.). Agric. Res., 2, 48-57 https://doi.org/10.1007/s40003-012-0049-z

Salem, S. S., El-Belely, E. F., Niedbała, G., Alnoman, M. M., Hassan, S. E. -D., Eid, A. M., Shaheen, T. I., Elkelish, A., & Fouda, A. (2020). Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials, 10, 2082. https://doi.org/10.3390/nano10102082

Sanjeev, K. M., & Sanjay, K. G. (2020). Morphological and biochemical responses to boron and zinc fertilizers in Stevia rebaudiana. Plant Archives, 20, 344-348.

Seyfouzadeh, A., & Mohammadi, S. (2012). Synthesis and characterization of boron nanopowders prepared by mechanochemical reaction between B2O3 and Mg powders. Journal of Materials Science, 39, 479-486. https://doi.org/10.1007/s12034-016-1150-x

Shi, Y., Cui, X., Zhang, Y., & Liu, M. (2023). Addition of spent oyster mushroom substrates has positive effects on alfalfa growth and soil nutrient availability. Turf Research, 3, 19. https://doi.org/10.48130/GR-2023-0019

Shin, H. J., Ro, H. S., Kawauchi, M., et al. (2025). Review on mushroom mycelium-based products and their production process: from upstream to downstream. Bioresour. Bioprocess., 12, 3. https://doi.org/10.1186/s40643-024-00836-7

Spago, F. R., Ishii Mauro, C. S., Oliveira, A. G., et al.(2014). Pseudomonas aeruginosa produces secondary metabolites that have biological activity against plant pathogenic Xanthomonas species. Crop Prot., 62, 46–54. https://doi.org/10.1016/j.cropro.2014.04.011

Taha, S. A. (2018). Effect of organic fertilizer addition and spraying seaweed extract on some growth characters, yield and active ingredient of arugula plant (Eruca sativa Mill). Journal Tikrit Unv. For Agri. Sci., 18(1), 21-30.

Tavarini, S., & Angelini, L. G. (2013). Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. J. Sci. Food Agric., 93, 2121–2129. https://doi.org/10.1002/jsfa.6016

Uzair, B., Kausar, R., Bano, S.A., Fatima, S., Badshah, M., Habiba, U., & Fasim, F. (2018). Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. Biomed Res. Int., 6147380. https://doi.org/10.1155/2018/6147380

Velusamy, B., Jordan, S. N., Curran, T., & Grogan H. (2021). Fertilizer properties of stored mushroom substrate as a sustainable source of nutrients and organic matter for agriculture, grasslands and agricultural soils. Irish Journal of Agric Food Research, 60, 1-11.

Villamarín-Gallegos, D., Oviedo-Pereira, D.G., Evangelista-Lozano, S., Sepúlveda- Jiménez, G., Molina-Torres, J. & Rodríguez-Monroy. M. (2020). Trichoderma asperellum, an inoculant for the production of steviol glycosides in Stevia rebaudiana Bertoni plants micropropagated in a temporary immersion bioreactor. Revista Mexicana de Ingeniería Química, 19, 1153-1161. https://doi.org/10.24275/rmiq/Bio947

Virella, G. (1997). Gram-negative rods III opportunistic and zoonotic bacteria In Microbiology and Infectious diseases by Virella, G. 3rd ed. Williams and Wikins, U.S.A. p:160.

Wagner, G.V. J., Cinthia, E. C. C., Lucas, d. S. A., Pedro, A. G. T., Ralph, N., José, E. P., & Diego, C, Z. (2025). From waste to resource: Sustainable reuse of spent shiitake mushroom substrate in subsequent production cycles. International Biodeterioration & Biodegradation, 200, 106034. https://doi.org/10.1016/j.ibiod.2025.106034

Wang, X., Zhou, X., Cai, Z., Guo, L., et al. (2021). A biocontrol strain of Pseudomonas aeruginosa CQ-40 promote growth and control Botrytis cinerea in tomato. Pathogens, 10, 22. https://doi.org/10.3390/pathogens10010022

Wichern, F., Islam, R., Hemkemeyer, M., Watson, C., & Joergensen, R. G . (2020) Organic amendments alleviate salinity effects on soil microoganisms and mineralisation processes in aerobic and anaerobic paddy rice soils. Front Sust Food Syst, 4, 30. https://.doi.org/10.3389/fsufs.2020.00030

Yang, L., Liao, R. Z., Yu, J. G., & Liu, R. Z. (2009). DFT study on the mechanism of Escherichia coli inorganic pyrophosphatase. The Journal of Physical Chemistry B, 113(18), 6505–3510. https://doi.org/10.1021/jp810003w

Yasmin, S., Hafeez, F. Y., Mirza, M. S., Rasul, M., Arshad, H. M. I., Zubair, M., & Iqbal, M. (2017). Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol., 8, 1895. https://doi.org/10.3389/fmicb.2017.01895

Yasmin, S., Hafeez, F. Y., & Rasul, G. (2014). Evaluation of Pseudomonas aeruginosa Z5 for biocontrol of cotton seedling disease caused by Fusarium oxysporum. Biocontrol Sci. Technol., 24, 1227-1242. https://doi.org/10.1080/09583157.2014.932754

Yousef, A. F., Youssef, M. A., Ali, M. M., Ibrahim, M. M., Xu, Y., & Mauro, R. P. (2020). Improved growth and yield response of jew's mallow (Corchorus olitorius L.) plants through biofertilization under semi-arid climate conditions in Egypt. Agronomy,10(11), 1801. https://doi.org/10.3390/1011180

Descargas

Archivos adicionales

Publicado

2025-05-05

Cómo citar

Al-budairy, Z. J., & Al-Taweel, L. S. (2025). Impact of Pseudomonas aeruginosa, white fungus waste, and nano fertilizer on pyrophosphatase activity, growth characteristics, and yield of stevia plant. Scientia Agropecuaria, 16(3), 359-373. https://doi.org/10.17268/sci.agropecu.2025.027

Número

Sección

Artículos originales