Relationships between the Visual Evaluation of Soil Structure (VESS) and soil properties in agriculture: A meta-analysis
DOI:
https://doi.org/10.17268/sci.agropecu.2023.007Palabras clave:
soil structure, bulk density, total soil porosity, soil penetration resistance, random effect models, forest plotResumen
The aim of this study was to analyze the relationships between the Visual Evaluation of Soil Structure (VESS) and soil properties that make its adoption widely used in agriculture. For this, 25 papers related to the VESS (2009-2022) were considered, and information on the soil property: bulk density (BD), total soil porosity (TP), soil penetration resistance (PR), macroporosity, microporosity, soil organic carbon (SOC), and mean weight diameter of stable aggregates (MWD). The sample size (n=120 cases), and the correlation coefficient were extracted. A meta-analysis was carried out to obtain a global measure of the correlation between the VESS and soil properties. In the first instance, a fixed effects model was fitted for the correlation (effect size as the response variable in the meta-analysis). Subsequently, a random effects model was fitted for the correlation, followed by a subgroup analysis according to soil properties, due to the presence of high heterogeneity. The overall effect (average correlation coefficient) of the fitted random effects model was 0.31 with a confidence interval of 0.22-0.41. The heterogeneity between studies was high (I 2: 94%) and statistically significant (p<0.001). Although it is moderate, the average correlation in practical terms may be sufficient. There were significant differences in some average correlations of some categories, such as BD, PR, TP, and microporosity. The weights reported for the BD, SOC, and PR were 29.7%, 16.4%, and 14.2%, respectively. The greatest contribution to the global effect of correlation between VESS and soil properties is provided by BD. The VESS is a reliable semi-quantitative method to assess soil quality and could be considered a promising visual predictor of soil physical properties such as BD, SOC, and PR. Periodic evaluation of structural quality should be an important aspect of soil quality management, improving the predictive level of soil properties.
Citas
Abdollahi, L., Getahun, G. T., & Munkholm, L. J. (2017). Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content. Soil Science Society of America Journal, 81(2), 380-91.
Abdollahi, L., & Munkholm, L. J. (2014). Tillage system and cover crop effects on soil quality: I. Chemical, mechanical, and biological properties. Soil Science Society of America Journal, 78(1), 262-70.
Askari, M. S., Cui, J., & Holden, N. M. (2013). The visual evaluation of soil structure under arable management. Soil and Tillage Research, 134, 1-10.
Auler, A. C., Galetto, S. L., Hennipman, F. S., Guntzel, E. D., Giarola, N. F., & Fonseca, A. F. (2017). Soil structural quality degradation by the increase in grazing intensity in the integrated crop-livestock system. Bragantia, 76, 550-6.
Ball, B. C., Batey, T., & Munkholm, L. J. (2007). Field assessment of soil structural quality development of the Peerlkamp test. Soil Use Manage, 23, 329-337.
Ball, B. C., Guimarães, R. M., Cloy, J. M., Hargreaves, P. R., Shepherd, T. G., & McKenzie, B. M. (2017). Visual soil evaluation: a summary of some applications and potential developments for agriculture. Soil and Tillage Research, 173, 114-24.
Calero, J., Aranda, V., Montejo-Raez, A., & Martin-Garcia, J. M. (2018). A new soil quality index based on morpho-pedological indicators as a site-specific web service applied to olive groves in the Province of Jaen (South Spain). Comput Electron Agric, 146, 66-76.
Castioni, G. A., Cherubin, M. R, Menandro, L. M., Sanches, G. M., de Oliveira Bordonal, R., et al. (2018). Soil physical quality response to sugarcane straw removal in Brazil: A multi-approach assessment. Soil and Tillage Research, 184, 301-9.
Cavalieri-Polizeli, K. M. V., Marcolino, F. C., Tormena, C. A., Keller, T., & Moraes, A. D. (2022). Soil Structural Quality and Relationships with Root Properties in Single and Integrated Farming Systems. Frontiers in Environmental Science, 10, 901302.
Çelik, İ., Günal, H., Acar, M., Acir, N., Bereket Barut, Z., & Budak, M. (2020). Evaluating the long‐term effects of tillage systems on soil structural quality using visual assessment and classical methods. Soil Use and Management, 36(2), 223-39.
Cherubin, M. R., Franco, A. L., Guimarães, R. M., Tormena, C. A., Cerri, C. E., Karlen, D. L., & Cerri, C. C. (2017). Assessing soil structural quality under Brazilian sugarcane expansion areas using Visual Evaluation of Soil Structure (VESS). Soil and Tillage Research, 173, 64-74.
Cui, J., Askari, M. S., & Holden, N. M. (2014). Visual evaluation of soil structure under grassland management. Soil Use and Management, 30(1), 129-38.
da Silva, A. P., Ball, B. C., Tormena, C. A., Giarola, N. F., & Guimarães, R. M. (2014). Soil structure and greenhouse gas production differences between row and interrow positions under no-tillage. Scientia Agricola, 71, 157-62.
Fernandes, M., da Silva Almeida, W. R., do Amaral, R. D. L., & Suzuki, L. E. A. S. (2022). Degree of compactness and soil quality of peach orchards with different production ages. Soil and Tillage Research, 219, 105324.
Franco, H. H. S., Guimarães, R. M. L., Tormena, C. A., Cherubin, M. R., & Favilla, H. S. (2019). Global applications of the Visual Evaluation of Soil Structure method: A systematic review and meta-analysis. Soil and Tillage Research, 190, 61-69.
Guimarães, R. M., Lamandé, M., Munkholm, L. J., Ball, B. C., & Keller, T. (2017). Opportunities and future directions for visual soil evaluation methods in soil structure research. Soil and Tillage Research, 173, 104-113.
Guimarães, R. M. L., Ball, B. C., Tormena, C. A., Giarola, N. F. B, & da Silva, Á. P. (2013) Relating visual evaluation of soil structure to other physical properties in soils of contrasting texture and management. Soil and Tillage Research, 127, 92-99.
Guimarães, R. M. L, Ball, B. C., & Tormena, C. A. (2011). Improvements in the visual evaluation of soil structure. Soil Use Manage, 27, 395-403.
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327, 557-560.
Johannes, A., Weisskopf, P., Schulin, R., & Boivin, P. (2017). To what extent do physical measurements match with visual evaluation of soil structure? Soil and Tillage Research, 173, 24-32.
Kraemer, F. B., Soria, M. A., Castiglioni, M. G., Duval, M., Galantini, J., & Morrás, H. (2017). Morpho-structural evaluation of various soils subjected to different use intensity under no-tillage. Soil and Tillage Research, 169,124-37.
Lin, L., De Pue, J., Vivanco, A. K. M., Van der Bolt, F., & Cornelis, W. (2022a). Visual assessment of soil structural quality across soil textures and compaction levels-Part I: Examination of intact soil cores. Geoderma, 426, 116099.
Lin, L., Van der Bolt, F., & Cornelis, W. (2022b). Visual assessment of soil structural quality across soil textures and compaction levels-Part II: Examination of profile walls vs Intact soil cores. Geoderma, 426, 116098.
Mauri, M., Elli, T., Caviglia, G., Uboldi, G., & Azzi, M. (2017). RAWGraphs: A Visualisation Platform to Create Open Outputs. In Proceedings of the CHItaly ’17: 12th Biannual Conference of the Italian SIGCHI 2017, Cagliari, Italy, 18-20 September 2017; pp. 1-5
Mueller, L., Shepherd, G., Schindler, U., Ball, B. C., Munkholm, L. J., et al. (2013). Evaluation of soil structure in the framework of an overall soil quality rating. Soil and Tillage Research, 127, 74-84.
Munkholm, L. J., Heck, R. J., & Deen, B. (2013). Long-term rotation and tillage effects on soil structure and crop yield. Soil and Tillage Research, 127, 85-91.
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). The PRISMA Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7), e1000097.
Mutuku, E. A., Vanlauwe, B., Roobroeck, D., Boeckx, P., & Cornelis, W. M. (2021). Visual soil examination and evaluation in the sub-humid and semi-arid regions of Kenya. Soil and Tillage Research, 213, 105135.
Newell-Price, J. P., Whittingham, M. J., Chambers, B. J., & Peel, S. (2013). Visual soil evaluation in relation to measured soil physical properties in a survey of grassland soil compaction in England and Wales. Soil Tillage Res, 127, 65-73.
Olivares, B., Araya-Alman, M., Acevedo-Opazo, C. et al. (2020). Relationship Between Soil Properties and Banana Productivity in the Two Main Cultivation Areas in Venezuela. J Soil Sci Plant Nutr, 20(3), 2512-2524.
Olivares, B. O., Calero, J., Rey, J. C., Lobo, D., Landa, B. B., & Gómez, J. A. (2022a). Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression. Catena, 208, 105718.
Olivares, B. O., Rey, J. C., Perichi, G., & Lobo, D. (2022b). Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela. Sustainability, 14(20),13531.
Olivares, B. O., Vega, A., Rueda-Calderón, M. A., Montenegro-Gracia, E., Araya-Almán, M., & Marys, E. (2022c). Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka: An Application with Random Forest. Sustainability, 14, 14123.
Pulido-Moncada, M., Helwig Penning. L., Timm, L. C., Gabriels, D., & Cornelis, W. M. (2014b). Visual examinations and soil physical and hydraulic properties for assessing soil structural quality of soils with contrasting textures and land use. Soil Tillage Res, 140, 20-28.
Pulido-Moncada, M., Penning, L. H., Timm, L. C., Gabriels, D., & Cornelis, W. M. (2017). Visual examination of changes in soil structural quality due to land use. Soil and Tillage Research, 173, 83-91.
Pulido-Moncada, M. P., Gabriels, D., Lobo, D., Rey, J. C., & Cornelis, W. M. (2014a). Visual field assessment of soil structural quality in tropical soils. Soil Tillage Res, 139, 8-18.
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna.
Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H. J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122-37.
Rossi, E. A., Ruiz, M., Rueda-Calderón, M. A., Bruno, C. I., Bonamico, N. C., & Balzarini M. G. (2019). Meta‐analysis of QTL studies for resistance to fungi and viruses in maize. Crop Science, 59(1), 125-139.
Rueda-Calderón, R., Balzarini, M., & Bruno, C. (2020). Meta-analysis for evaluating the efficiency of genomic selection in cereals. Journal of Basic and Applied Genetics, 31(1), 23-32.
Schwarzer, G. (2007). meta: An R package for meta-analysis. R news, 7(3), 40-45.
Shepherd, T. G. (2009). Visual soil assessment. In: Volume 1. Field Guide for Cropping and Pastoral Grazing on Flat to Rolling Country, 2nd ed. Horizons Regional Council, Palmerston North: New Zealand.
Tuchtenhagen, I. K., Lima, C. L., Bamberg, A. L., Guimarães, R. M., Pulido-Moncada, M. (2018). Visual evaluation of the soil structure under different management systems in lowlands in southern Brazil. Revista Brasileira de Ciência do Solo, 42, e0170270.
Vasu, D., Tiwari, G., Sahoo, S., Dash, B., Jangir, A., Sharma, R. P., & Chandran, P. (2021). A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. Catena, 198, 105042.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).