Rhizospheric actinobacteria of Opuntia sp. “prickly pear” with deaminase activity as growth promoting in Solanum lycopersicum L. under salinity stress

Autores/as

  • Marilín Sánchez-Purihuamán Laboratorio de Investigación Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Perú
  • Jorge Hernández-Hernández Laboratorio de Investigación Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Lambayeque. Peru
  • Junior Caro-Castro Laboratorio de Ecología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima. Peru
  • Carmen Carreño-Farfán Laboratorio de Investigación Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Lambayeque. Peru

DOI:

https://doi.org/10.17268/sci.agropecu.2023.002

Palabras clave:

Salinity, ACC deaminase, Actinobacteria, tomato, plant growth promoting, Opuntia sp.

Resumen

The growing of Solanum lycopersicum L. "tomato" is affected by salinity, reducing its water consumption, and affecting negatively plant growth and development. Therefore, it is necessary to seek sustainable cultivation and fertilization options, such as the use of plant growth-promoting rhizobacteria. This research aimed to determine the potential of rhizospheric Actinobacteria isolated from Opuntia sp. "prickly pear" as tomato growth promoting under salinity. The genera of isolated Actinobacteria were identified, the synthesis of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC) was characterized and its effect on the germination of tomato cultivar Río Grande seeds was evaluated. Two tests on non-saline and saline soils were carried out to compare the effect of Streptomyces spp. and Nocardia sp. in plant development in the greenhouse. Several Actinobacteria genera were isolated from 87.03% of samples, highlighting Streptomyces (46.67%) and Nocardia (34.0%). 9.33% of the Actinobacteria presented ACC deaminase activity, which increased seed germination, and the growth and yield of seedlings with increases of 88.98% (height); 96.30% (number of sheets); 201.35% (aerial biomass); 173.77% (root length); 100.0% (root weight); 150.0% (number of fruits) and 173.14% (weight of fruits), as well as 1.37 mg/g in the chlorophyll content in the saline soil. Also, Streptomyces sp. strain 21 decreased sodium content and increased potassium and K+/Na+ rate in the leaves and roots of the plants with the highest yield (1.068 kg/plant) in the saline soil. In conclusion, the positive effect of Actinobacteria as promoters of tomato growth and yield, increasing chlorophyll content, and decreasing salinity stress was demonstrated.

Biografía del autor/a

Marilín Sánchez-Purihuamán, Laboratorio de Investigación Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Perú

 

 

Jorge Hernández-Hernández, Laboratorio de Investigación Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Lambayeque. Peru

 

 

Junior Caro-Castro, Laboratorio de Ecología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima. Peru

 

 

Carmen Carreño-Farfán, Laboratorio de Investigación Biotecnología Microbiana, Facultad de Ciencias Biológicas, Universidad Nacional Pedro Ruiz Gallo, Lambayeque. Peru

 

 

Citas

Abbasi, S., Sadeghi, A., & Safaie, N. (2020). Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes. Scientia Horticulturae, 265, 109206.

Afridi, M., Amna, S., Mahmood, T., Salam, A., et al. (2019). Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry, 139, 569-577.

Aini, N., Yamika, W., Aini, L., & Kurniawan, A. (2021). Application of saline tolerant bacteria and soil ameliorants improved growth, yield and nutrient uptake of tomato in saline land. Australian Journal of Crop Science, 15(06), 827-834.

Aly, M., El Sayed, H., & Jastaniah, S. (2012). Synergistic effect between Azotobacter vinelandii and Streptomyces sp. isolated from saline soil on seed germination and growth of wheat plant. Journal of American Science, 8(5), 667-676.

Ameur, H., & Ghoul, M. (2014). Effect of salinity stress, Streptomyces sp. SF5 and Salsola vermiculata on germination of Triticum durum L. Sky Journal Agricultural Research, 3(1), 7-16.

Amna, I., Din, B., Sarfraz, S., Xia, Y., Kamran, M., et al. (2019). Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC- deaminase producing Bacillus strains under induced salinity stress. Ecotoxicology and Environmental Safety, 183, 109466.

Boari, F., Cantore, V., Di Venere, D., Sergio, L., Candido, V., & Schiattone, M. (2019). Pyraclostrobin can mitigate salinity stress in tomato crop. Agricultural Water Management, 222, 254-264.

Bustillos, M., Corona, I., Castañeda, M., Águila, C., Seynos, E., et al. (2017). Culturable facultative methylotrophic bacteria from the cactus Neobuxbaumia macrocephala possess the locus xoxF and consume methanol in the presence of Ce 3+ and Ca 2+. Microbes and Environments, 32(3), 244-251.

Chen, S., Zhang, Z., Wang, Z., Guo, X., Liu, M., et al. (2016). Effects of uneven vertical distribution of soil salinity under a buried Straw layer on the growth, fruit yield, and fruit quality of tomato plants. Scientia Horticulturae, 203, 131-142.

Damodharan, K., Palaniyandi, S., Le, B., Suh, J., & Yang, S. (2018). Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom). The Journal of Microbiology, 56(10), 753-759.

Dias, M., Bastos, M., Xavier, V., Cassel, E., Astarita, L., & Santarém, E. (2017). Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiology and Biochemistry, 118, 479-493.

Djebaili, R., Pellegrini, M., Smati, M., Del Gallo, M., & Kitouni, M. (2020). Actinomycete strains isolated from saline soils: plant-growth-promoting traits and inoculation effects on Solanum lycopersicum. Sustainability, 12, 4617.

Djebaili, R., Pellegrini, M., Rossi, M., Forni, C., Smati, M., Del Gallo, M., & Kitouni, M. (2021). Characterization of plant growth-promoting traits and inoculation effects on Triticum durum of Actinomycetes isolates under salt stress conditions. Soil systems, 5(26).

Escobar, C., Horna, Y., Carreño, C., & Mendoza, G. (2011). Caracterización de cepas nativas de Azotobacter spp. y su efecto en el desarrollo de Lycopersicun esculentum Mill. "tomate" en Lambayeque. Scientia Agropecuaria, 2(1), 39-49.

Fonseca, C., Coleman, D., Garrido, E., Visel, A., Tringe, S., & Partida, L. (2016). The cacti microbiome: Interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, 7, 150.

Forni, C., Duca, D., & Glick, B. (2016). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil, 410, 335–356.

Gao, Y., Han, Y., Li, X., Li, M., Wang, C., et al. (2022). A salt-tolerant Streptomyces paradoxus D2-8 from rhizosphere soil of Phragmites communis augments soybean tolerance to soda saline-alkali stress. Polish journal of microbiology, 71(1), 43-53.

Gong, Y., Chen, J., Pan, Y., Li, W., Xu, J., et al. (2020). Antifungal potential evaluation and alleviation of salt stress in tomato seedlings by a halotolerant plant growth-promoting actinomycete Streptomyces sp. KLBMP5084. Rhizosphere, 16, 2452-2198.

Hernández, T., Brown, J., Schlumpberger, B., Eguiarte, L., & Magallón, S. (2014). Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. New Phytologist. 202, 1382–1397.

Horstmann, J., Dias, M., Ortolan, F., Silva, R., Astarita, L., & Santarém, E. (2020). Streptomyces sp. CLV45 from Fabaceae rhizosphere benefits growth of soybean plants. Brazilian Journal of Microbiology, 51(4), 1861–1871.

Hu, D., Li, S., Li, Y., Peng, J., Wei, X., et al. (2020). Streptomyces sp. strain TOR3209: a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Scientific reports, 10(1), 20123.

Jaemsaeng, R., Jantasuriyarat, C., & Thamchaipenet, A. (2018). Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Scientific Reports, 8(1), 1950.

Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., & Maruo, T. (2017). A correlation analysis on chlorophyll content and SPAD value in tomato leaves. Hort Research, 71, 37-42.

Kapadia, C., Patel, N., Rana, A., Valdya, H., Alfarraj, S., et al. (2022). Evaluation of plant growth-promoting and salinity ameliorating potential of halophilic bacteria isolated from saline soil. Frontiers in plant science, 13, 946217.

Kaur, T., & Manhas, R. (2022). Evaluation of ACC deaminase and indole acetic acid production by Streptomyces hydrogenans DH16 and its effect on plant growth promotion. Biocatalysis and Agricultural Biotechnology, 42(102321), 102321.

Li, H., Yue, H., Li, L., Liu, Y., Zhang, H., Wang, J., & Jiang, X. (2021). Seed Biostimulant MGW9 (SB-MGW9) Biopriming Improves Salt Tolerance during Maize Seed Germination. AMB Express, 11 (71).

Miceli, A., Moncada, A., & Vetrano, F. (2021). Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants. Agronomy (Basel, Switzerland), 11(6), 1143.

Ministerio de Agricultura y Riego, MINAGRI. (2015). Plan estratégico sectorial multianual 2015-2021 MINAGRI, Oficina General de Planteamiento y Presupuesto, OGPP, Julio de 2015.

Ministerio del Ambiente. (2014). Todos los cactus del Perú, 538 Pp. Lima, diciembre de 2004.

Nozari, R., Ortolan, F., Astarita, L., & Santarém, E. (2021). Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Brazilian Journal of Microbiology, 52, 1371–1383.

Nozari, R., Ramos, L., da Luz, L., Almeida, R., Lucas, A., et al. (2022). Halotolerant Streptomyces spp. induce salt tolerance in maize through systemic induction of the antioxidant system and accumulation of proline. Rhizosphere, 24, 100623.

Ostolaza, C. (2014). Todos los cactus del Perú. Ministerio del Ambiente, Editorial Franco EIRL.538P.

Puppala, K., Bhavsar, K., Sonalkar, V., Khire, J., & Dharne, M. (2019). Characterization of novel acidic and thermostable phytase secreting Streptomyces sp. (NCIM 5533) for plant growth promoting characteristics. Biocatalysis and Agricultural Biotechnology,18, 1878-8181.

Qi, D., Zou, L., Zhou, D., Chen, Y., Gao, Z., et al. (2019). Taxonomy and broad-spectrum antifungal activity of Streptomyces sp. SCA3-4 isolated from rhizosphere soil of Opuntia stricta. Frontiers in Microbiology, 10,1390.

Rangseekaew, P., Barros, A., Pathom, W., & Manzanera, M. (2021). Deep-sea Actinobacteria mitigate salinity stress in tomato seedlings and their biosafety testing. Plants, 10(8), 1687.

Rangseekaew, P., Barros, A., Pathom, W., & Manzanera, M. (2022). Plant beneficial deep-sea Actinobacterium, Dermacoccus abyssi MT1.1T promote growth of tomato (Solanum lycopersicum) under salinity stress. Biology, 11(2), 191.

Ruiz, L. (2021). Actinobacterias rizosféricas de Echinopsis pachanoi “San Pedro hembra” y su potencial como promotores de crecimiento en Solanum lycopersicum L. bajo estrés salino. [tesis de pregrado, Universidad Nacional Pedro Ruiz Gallo, Lambayeque].

Said, S. (2022). Amélioration de la symbiose Sinorhizobium meliloti – Medicago ‎sativa après co-inoculation par des Actinobacteria. [tesis de posgrado, Université Ferhat Abbas Sétif 1, Argelia].

SENAMHI. (2023). Mapa Climático del Perú. Servicio Nacional de Meteorología e Hidrología del Perú. Recuperado el día 10 de enero del 2023. https://www.senamhi.gob.pe/main.php?dp=lambayeque&p=mapa-climatico-del-peru

Soca, R., Rojas, J., Willems, L., Ocola, C., Fernández, R., & Pérez, J. (2016). Identificación de las tierras degradadas por la salinidad del suelo en los cultivos de caña de azúcar mediante imágenes de satélite. Revista de Investigación de Física,19,19.

Thiam, S., Villamor, G., Baffour, N., & Matty, F. (2019). Soil salinity assessment and coping strategies in the coastal agricultural landscape in Djilor district, Senegal. Land Use Policy, 88, 104191.

Welle, P., & Mauter, M. (2017). High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California. Environmental Research Letters, 12(9), 094010.

Yoolong, S., Kruasuwan, W., Thanh Pham, H., Jaemsaeng, R., Jantasuriyarat, Ch., & Thamchaipenet A. (2019). Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC desaminase. Scientific Reports, 9,1275.

Zhang, S., Gan, Y., & Xu, B. (2019). Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology, 19, 1-18.

Descargas

Publicado

2023-01-31

Cómo citar

Sánchez-Purihuamán, M., Hernández-Hernández, J. ., Caro-Castro, J. ., & Carreño-Farfán, C. . (2023). Rhizospheric actinobacteria of Opuntia sp. “prickly pear” with deaminase activity as growth promoting in Solanum lycopersicum L. under salinity stress. Scientia Agropecuaria, 14(1), 21-30. https://doi.org/10.17268/sci.agropecu.2023.002

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a