Degradation kinetics and thermodynamic analysis of betalains on microencapsulated beetroot juice using maltodextrin and sweet potato starch

Autores/as

  • Azucena Rodríguez-Mena Tecnológico Nacional de México/IT Durango, División de Estudios de Posgrado e Investigación. Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango. México. https://orcid.org/0000-0003-3575-1595
  • Luz Araceli Ochoa-Martínez Tecnológico Nacional de México/IT Durango, División de Estudios de Posgrado e Investigación. Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango. México. https://orcid.org/0000-0001-9105-7958
  • Silvia Marina González- Herrera Tecnológico Nacional de México/IT Durango, División de Estudios de Posgrado e Investigación. Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango. México. https://orcid.org/0000-0002-0908-9844
  • Olga Miriam Rutiaga-Quiñones Tecnológico Nacional de México/IT Durango, División de Estudios de Posgrado e Investigación. Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango. México. https://orcid.org/0000-0002-2832-1688
  • Juliana Morales-Castro Tecnológico Nacional de México/IT Durango, División de Estudios de Posgrado e Investigación. Blvd. Felipe Pescador 1830 Ote. C.P. 34080, Durango. México. https://orcid.org/0000-0003-0750-4677

DOI:

https://doi.org/10.17268/sci.agropecu.2021.034

Palabras clave:

Beetroot, betalains, degradation, microencapsulation, temperature

Resumen

Natural colorants have become important due to their health benefits for humans. In that sense, it is important to evaluate the degradation kinetics of these components, in order to establish stability under different processing and/or storage conditions. This study provides experimental and simulated results about the degradation of betalains in microencapsulated beetroot juice. Maltodextrin solution (MDX 10%) and sweet potato starch solution (SPS 2%) in proportions of 40MDX:60SPS, 20MDX:80SPS and 0MDX:100SPS were used as microencapsulating agents. The thermal degradation of betalains in the microencapsulated powders was evaluated at three temperatures (6, 19 and 30 °C) in order to predict the behavior under different conditions, using the first-order kinetic model. The kinetic parameters were identified using linear regression on the logarithmic curves of the experimental data to obtain the Arrhenius equations. The highest content of betalains was 2.58 mg/g and the lowest activation energy value was 48.71 KJ/mol, with both values corresponding to the powder that was microencapsulated with 20MDX:80SPS. The above results suggest high betalain stability in this powder since there was less sensitivity to temperature in comparison to the rest of the powders. Additionally, some thermodynamic parameters were evaluated, which confirmed that the process is non-spontaneous and irreversible. The results obtained from this study could be a useful tool to predict the minimal losses during processing and give the possibility to improve and select the food products where this kind of natural colorant can be applied.

Citas

Al-Zubaidy, M. M. I., & Khalil, R. A. (2007). Kinetic and prediction studies of ascorbic acid degradation in normal and concentrate local lemon juice during storage. Food Chemistry, 101(1), 254–259.

Azeredo, H. M. C. (2009). Betalains: Properties, sources, applications, and stability - A review. International Journal of Food Science and Technology, 44(12), 2365–2376.

Burdurlu, H. S., Koca, N., & Karadeniz, F. (2006). Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering, 74(2), 211–216.

Buvé, C., Kebede, B. T., De Batselier, C., Carrillo, C., Pham, H. T. T., et al. (2018). Kinetics of colour changes in pasteurised strawberry juice during storage Carolien Buv e. Journal of Food Engineering, 216, 42–51.

Cai, Y., Sun, M., & Corke, H. (1998). Colorant Properties and Stability of Amaranthus Betacyanin Pigments. Journal of Agricultural and Food Chemistry, 46(11), 4491–4495.

Caldas-cueva, J. P., Morales, P., Ludeña, F., Betalleluz-pallardel, I., Chirinos, R., et al. (2016). Stability of betacyanin pigments and antioxidants in Ayrampo (opuntia soehrensii britton and rose ) seed extracts and as a yogurt natural colorant. Journal of Food Processing and Preservation, 40, 541–549.

Castellanos-Santiago, E., & Yahia, E. M. (2008). Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 56(14), 5758–5764.

Chew, Y. M., Hung, C. H., & King, V. A. E. (2019). Accelerated storage test of betalains extracted from the peel of pitaya (Hylocereus cacti) fruit. Journal of Food Science and Technology, 56(3), 1595–1600.

Clifford, T., Howatson, G., West, D. J., & Stevenson, E. J. (2015). The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients, 7, 2801–2822.

Costa, H. C. B., Silva, D. O., Gustavo, L., & Vieira, M. (2018). Physical properties of açai-berry pulp and kinetics study of its anthocyanin thermal degradation. Journal of Food Engineering, 239(May), 104–113.

De Mejia, E. G., Zhang, Q., Penta, K., Eroglu, A., & Lila, M. A. (2020). The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annual Review of Food Science and Technology, 11, 145–182.

Desai, K. G. H., & Park, H. J. (2005). Recent Developments in Microencapsulation of Food Ingredients. In Drying Technology: An International Journal (Vol. 23, Issue 7).

Dhuique-Mayer, C., Tbatou, M., Carail, M., Caris-Veyrat, C., Dornier, M., & Amiot, M. J. (2007). Thermal degradation of antioxidant micronutrients in Citrus juice: Kinetics and newly formed compounds. Journal of Agricultural and Food Chemistry, 55(10), 4209–4216.

Esatbeyoglu, T., Wagner, A., Schini-Kerth, V. B., & Rimbach, G. (2015). Betanin – a food colorant with biological activity. Mol. Nutr. Food Res., 59(1), 36-47.

Escalona-García, L. A., Pedroza-Islas, R., Natividad, R., Rodriguez-Huezo, M. E., Carrillo-Navas, H., & Perez-Alonso, C. (2016). Oxidation kinetics and thermodynamic analysis of chia oil microencapsulated in a whey protein concentrate-polysaccharide matrix. Journal of Food Engineering, 175, 93–103.

Esquivel-González, B. E., Ochoa-Martinez, L. A., & Rutiaga-Quiñones, O. M. (2015). Microencapsulacióm mediante secado por aspersión de compuestos bioactivos. Revista Iberoamericana de Tecnología Postcosecha, 16(2), 180-192.

Esquivel-González, B. E., Rutiaga-Quiñones, O. M., Rocha-Guzmán, N. E., Medina-Torres, L., Varela-Santos, E. del C., & Ochoa-Martínez, L. A. (2017). Natural dye ultrasound extraction from beetroot: role of extraction solvent pH on color and enzyme inactivation. Journal of Chemical J. Chem. Bio. Phy. Sci. Sec. B, 7(3), 784–796.

Güneşer, O. (2016). Pigment and color stability of beetroot betalains in cow milk during thermal treatment. Food Chemistry, 196, 220-227.

Labuza, T. ., & Riboh, D. (1982). Theory and applycation of Arrehnius kinetics to the prediction of nutrient losses in foods. Journal of Food Science, 36, 66–74.

Patras, A., Brunton, N. P., Donnell, C. O., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods ; mechanisms and kinetics of degradation. Trends in Food Science & Technology, 21(1), 3-11.

Ramaswamy, H. S., Van De Voort, F. R., & Ghazala, S. (1989). An Analysis of TDT and Arrhenius Methods for Handling Process and Kinetic Data. Journal of Food Science, 54(5), 1322–1326.

Sadilova, E., Carle, R., & Stintzing, F. C. (2007). Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol. Nutr. Food Res., 51, 1461-1471.

Sánchez-Chávez, W., Cortez-Arredondo, J., Solano-Cornejo, M., & Vidaurre-Ruiz, J. (2015). Kinetics of thermal degradation of betacyanins, betaxantins and vitamin C in a juice-based drink beet (Beta vulgaris l.) and honey. Scientia Agropecuaria, 6(2), 111-118.

Silva, N. L., Crispim, J. M. S., & Vieira, R. P. (2016). Kinetic and thermodynamic analysis of anthocyanin thermal degradation in acerola ( Malpighia emarginata D. C.) pulp. Journal of Food Processing and Preservation, 00, 1–7.

Stintzing, F. C., Schieber, A., & Carle, R. (2002). Identification of betalains from yellow beet (Beta vulgaris L.) and cactus pear [Opuntia ficus-indica (L.) Mill.] by high-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 50(8), 2302–2307.

Summen, M. A., & Erge, H. S. (2012). Thermal Degradation Kinetics of Bioactive Compounds and Visual Color in Raspberry Pulp. Journal of Food Processing and Preservation, 38(1), 551–557.

Van-Boekel, M. A. J. S. (1996). Statistical Aspects of Kinetic Modeling for Food Science Problems. Journal of Food Science, 61(3), 477-486.

Vieira, R. P., Mokochinski, J. B., & Sawaya, A. C. H. F. (2015). Mathematical Modeling of Ascorbic Acid Thermal Degradation in Orange Juice during Industrial Pasteurizations. Journal of Food Process Engineering, 39(6), 683–691.

Vikram, V. B., Ramesh, M. N., & Prapulla, S. G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31-40.

Von-Elbe, J. H., Main, I.-Y., & Amundson, C. H. (1974). Color stability of betanin. Journal of Food Science, 39, 334-337.

Publicado

2021-07-20

Cómo citar

Rodríguez-Mena, A. ., Ochoa-Martínez, L. A. ., González- Herrera, S. M. ., Rutiaga-Quiñones, O. M. ., & Morales-Castro, J. . (2021). Degradation kinetics and thermodynamic analysis of betalains on microencapsulated beetroot juice using maltodextrin and sweet potato starch. Scientia Agropecuaria, 12(3), 311-317. https://doi.org/10.17268/sci.agropecu.2021.034

Número

Sección

Artículos originales