Bursera graveolens essential oil: Physicochemical characterization and antimicrobial activity in pathogenic microorganisms found in Kajikia audax

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2021.033

Palabras clave:

spoiling microorganisms, Bursera graveolens, essential oil, minimum inhibitory concentration, minimum bactericidal concentration, marine food

Resumen

Essential oils are products from aromatic plants, which, due to their biological, allelopathic, antioxidant and antimicrobial effects, are important for food preservation. Kajikia audax is a fish of great commercial importance, however, it is highly perishable, requiring strategies to extend its shelf life. In vitro antimicrobial activity of Bursera graveolens essential oil was determined against microorganisms isolated from K. audax. Essential oil was extracted by steam distillation, obtaining a yield of 1.25%, a density of 0.83 g/ml and a refractive index of 1.473°, in addition, it was determined by GC-MS that D-limonene (77.6%) is the majority compound. Antimicrobial tests showed that the minimum inhibitory concentration (MIC) for Aeromonas salmonicida and Pichia kudriavzevii was 1.62 mg/ml and 6.48 mg/ml respectively, and the minimum bactericidal concentration (MBC) was 25.92 mg/ml for both microorganisms. Pseudomonas aeruginosa showed total resistance against the concentrations used. B. graveolens essential oil turned out to be a potential product to control the growth of microorganisms isolated from K. audax, however, it should be tested against species of the genera Vibrio, Flavobacterium, Shewanella, Lactococcus and Streptococcus that cause spoiling of hydrobiological products.

Citas

Bachir, R. G., & Benali, M. (2012). Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pacific Journal of Tropical Biomedicine, 2(9), 739–742.

Bajpai, V. K., Baek, K. H., & Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: A review. Food Research International, 45(2), 722–734.

Calo, J. R., Crandall, P. G., O’Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems - A review. Food Control, 54, 111-119.

Canales-Martínez, M., Rivera-Yáñez, C., Salas-Oropeza, J., López, H., Jiménez-Estrada, M., et al. (2017). Antimicrobial Activity of Bursera morelensis Ramírez Essential Oil. African Journal of Traditional, Complementary and Alternative Medicines, 14(3), 74-82.

Carmona, R., Quijano-Celís, C. E., & Pino, J. A. (2009). Leaf oil composition of Bursera graveolens (Kunth) Triana et planch. Journal of Essential Oil Research, 21(5), 387–389.

Cevallos, V., & Londoño, L. (2017). Aceites esenciales en la conservación de alimentos. Microciencia, 6, 38–50.

Cruz, G., Feijoo, C., Carrión, L., Pirila, M., Keiski, R., & Cruz, J. (2013). Rendimiento y calidad del aceite esencial de hojas de Bursera graveolens y Myroxylon peruiferum procedentes del Área de Conservación Regional Angostura-Faical, Tumbes, Perú. Manglar, 1, 10.

DIGESA. (2008). Dirección General de Salud Ambiental. Instructivo de preparación y dilución de muestras de alimentos para análisis microbiológico. Lima.

El Jery, A., Hasan, M., Rashid, M. M., Al Mesfer, M. K., Danish, M., & Ben Rebah, F. (2020). Phytochemical characterization, and antioxidant and antimicrobial activities of essential oil from leaves of the common sage Salvia officinalis L. from Abha, Saudi Arabia. Asian Biomedicine, 14, 261-270.

Farias, T. C., Eduardo, L. S., Lima, Z. N., & Ferreira, S. B. (2017). Screening Antibacteriano do (+)-α– Pineno Frente a cepas bacterianas gram-negativas. In: II Congresso Brasileiro de Ciência Da Saúde, Campina Grande, Parabaíba, Brasil, 14-16 junho 2017.

Fernández-Ruiz, M., Yepes-Fuentes, L., Tirado-Ballestas, I., & Orozco, M. (2018). Repellent Activity of the essential oil of Bursera graveolens Jacq. ex L., against Tribolium castaneum Herbst, 1797 (Coleoptera: Tenebrionidae). Anales de Biología, 40, 87–93.

Fon-Fay, F. M., Casariego, A., Falco A. S., & Pino J. A. (2017). Actividad Antimicrobiana de aceites esenciales de Ocotea Quixos (Lam.) Kosterm, Bursera Graveolens (Kunth) Triana y Planch, Cymbopogon citratus (DC) Stapf y Curcuma longa (L.) sobre microorganismos contaminantes de alimentos. Ciencia y Tecnología de Alimentos, 27(3), 27-31.

Hili, P., Evans, C. S., & Veness, R. G. (1997). Antimicrobial action of essential oils: The effect of dimethylsulphoxide on the activity of cinnamon oil. Letters in Applied Microbiology, 24(4), 269–275.

Huong, L. T., Viet, N. T., Sam, L. N., Giang, C. N., Hung, N. H., et al. (2021). Antimicrobial activity of the essential oils from the leaves and stems of Amomum rubidum Lamxay & NS Lý. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 20(1), 81-89.

Jaramillo-Colorado, B. E., Suarez-López, S., & Marrugo-Santander, V. (2019). Volatile chemical composition of essential oil from Bursera graveolens (Kunth) Triana & Planch and their fumigant and repellent activities. Acta Scientiarum - Biological Sciences, 41(1), 2020.

Karthiga Rani, M., Chelladurai, G., & Jayanthi, G. (2016). Isolation and identification of bacteria from marine market fish Scomberomorus guttatus (Bloch and Schneider, 1801) from Madurai district, Tamil Nadu, India. Journal of parasitic diseases: official organ of the Indian Society for Parasitology, 40(3), 1062–1065.

Laith, A. A. (2021). Phytochemical analysis and antimicrobial activities of mangrove plant (Rhizophora apiculata) against selected fish pathogenic bacteria. In IOP Conference Series: Earth and Environmental Science, 718(1), 012076.

Law, J. W. F., Mutalib, N. S. A., Chan, K. G., & Lee, L. H. (2015). Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5, 1–20.

Leal-Torres, E., López-Malo-Vigil, A., & Sosa -Morales, M. E. (2013). Extracción, composición y caracterización de los aceites esenciales de hoja y semilla de cilantro (Coriandrum sativum). Temas Selectos de Ingeniería de Alimentos, 7(1), 97–103.

Loor, L.; Coello, D. (2019). Estudio Comparativo de la Composición Química del Aceite Medicinal de Palo Santo de Illari vs. la Composición Química del Aceite Esencial de Palo Santo. Ciencia, 37, 223-224.

Luján-Hidalgo, M. C., Gutiérrez-Miceli, F. A., Venturacanseco, L. M. C., Dendooven, L., Mendoza-López, M. R., Cruz-Sánchez, et al. (2012). Composición química y actividad antimicrobiana de los aceites esenciales de hojas de Bursera graveolens y Taxodium mucronatum de Chiapas, México. Gayana - Botánica, 69(1), 7–14.

Mancuso, M., Catalfamo, M., Laganà, P., Rappazzo, A. C., Raymo, V., et al. (2019). Screening of antimicrobial activity of Citrus essential oils against pathogenic bacteria and Candida strains. Flavour and Fragrance Journal, 34(3), 187-200.

Meyer-Torres, G., Sarmiento, O. I., Ramírez, R. I., & Guevara, O. (2018). Evaluación del rendimiento del aceite esencial de caléndula (Calendula officinalis L) obtenido por OAHD. Revista ION, 31(1), 13–19.

Monzote, L., Hill, G. M., Cuellar, A., Scull, R., & Setzer, W. N. (2012). Chemical composition and anti-proliferative properties of Bursera graveolens essential oil. Natural Product Communications, 7(11), 1531–1534.

Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2), 361–366.

Opulente, D. A., Langdon, Q. K., Buh, K. V., Haase, M. A. B., Sylvester, K., et al. (2019). Pathogenic budding yeasts isolated outside of clinical settings. FEMS Yeast Res., 19(3), foz032.

Pandey, A. K., Kumar, P., Singh, P., Tripathi, N. N., & Bajpai, V. K. (2017). Essential oils: Sources of antimicrobials and food preservatives. Frontiers in Microbiology, 7, 1–14.

Parlapani, F. F., Kormas, K. A., Boziaris, I. S. (2015). Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis. Journal of the Science of Food and Agriculture, 95(12), 2386-2394.

Parvekar, P., Palaskar, J., Metgud, S., Maria, R., & Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial Investigations in Dentistry, 7(1), 105-109.

Pastrana-Puche, Y. I., De Paula, C. D., & Gallo-García, L. A. (2017). Evaluación de sustancias antimicrobianas naturales en la conservación de Avena sinuana. Corpoica Ciencia y Tecnologia Agropecuaria, 18(2), 321–334.

Patiño, L., Saavedra, A., & Martínez, J. (2014). Extracción por arrastre de vapor de aceite esencial de romero. Handbook. Ed. Ciencias Tecnológicas y Agrarias. Sucre, Bolivia.

Pękala-Safińska, A., Tkachenko, H., Kurhaluk, N., Buyun, L., Osadowski, Z., et al. (2021). Studies on The Inhibitory Properties of Leaf Ethanolic Extracts Obtained from Ficus (Moraceae) Species Against Aeromonas spp. strains. Journal of Veterinary Research, 65(1), 59-66.

Peña, Y. P., Castillo, V. L., López, N. A., Jardines, A. C., & Areas, R. T. (2019). Antimicrobial resistance in bacteria isolated in fish and shellfish. Revista Habanera de Ciencias Médicas, 18(3), 500-512.

Pinto, R. 2014. Estudo da atividade antibacteriana da Carvona e seus derivados. Dissertacão de Mestrado. Universidade da Beira Interior, Covilha, Portugal.

Preedy, V. R. (Esed.). (2015). Essential oils in food preservation, flavor and safety. Academic Press Elsevier. United Kingdom.

Puescas, M. (2010). Estudio dendrológico de la especie Bursera graveolens - Palo Santo, Región Tumbes. In: http://planteetplanete.org/wp-content/uploads/2018/02/53.pdf

Rey-Valeirón, C., Guzmán, L., Saa, L. R., López-Vargas, J., & Valarezo, E. (2017). Acaricidal activity of essential oils of Bursera graveolens (Kunth) Triana & Planch and Schinus molle L. on unengorged larvae of cattle tick Rhipicephalus (Boophilus) microplus (Acari:Ixodidae). Journal of Essential Oil Research, 29(4), 344–350.

Savoldi, T. L., Glamočlija, J., Soković, M., Gonçalves, J. E., Ruiz, S. P., Linde, G. A., et al. (2020). Antimicrobial activity of essential oil from Psidium cattleianum Afzel. ex Sabine leaves. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 19(6), 614-627.

Servicios Antimicrobianos (2012). INEI – ANLIS “Dr. Carlos G. Malbrán”Malbrán C. Método de determinación de sensibilidad antimicrobiana por dilución, MIC testing. M07-A9,32(2).

Shahbazi, Y. (2015). Chemical Composition and in Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria. Journal of pathogens, 2015, 916305.

Sotelo-Méndez, A. H., Figueroa Cornejo, C. G., Césare Coral, M. F., & Alegría Arnedo, M. C. (2017). Chemical composition, antimicrobial and antioxidant activities of the essential oil of Bursera graveolens (burseraceae) from Perú. Indian Journal of Pharmaceutical Education and Research, 51(3), S429–S436.

Soto, Z., Pérez, L., & Estrada, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: Una mirada en Colombia. Salud Uninorte, 32(1), 105–122.

Sudheesh, P. S., Al-Ghabshi, A., Al-Mazrooei, N., & Al-Habsi, S. (2012). Comparative pathogenomics of bacteria causing infectious diseases in fish. International journal of evolutionary biology, 2012, 457264.

Walczak, N., Puk, K., & Guz, L. (2017). Bacterial flora associated with diseased freshwater ornamental fish. Journal of veterinary research, 61(4), 445–449.

Wang, P., Liu, Y., Yin, Y., Jin, H., Wang, S., et al. (2011). Diversity of microor-ganisms isolated from the soil sample surround Chroogomphus rutilus in the Beijing region. International Journal of Biological Sciences, 7(2), 209–220.

White, T.J., Bruns, T.D., Lee, S.B., et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J., Eds., PCR Protocols: A Guide to Methods and Applications, Academic Press, New York.

Wijesinghe, G. K., Feiria, S. B., Maia, F. C., Oliveira, T. R., Joia, F., et al. (2021). In-vitro Antibacterial and Antibiofilm Activity of Cinnamomum verum Leaf Oil against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. Anais da Academia Brasileira de Ciências, 93(1), e20201507.

Yukawa, C., Imayoshi, Y., Iwabuchi, H., Komemushi, S., & Sawabe, A. (2006). Chemical composition of three extracts of Bursera graveolens. Flavour and Fragrance Journal, 21(2), 234–238.

Zhou, H., Tao, N., & Jia, L. (2014). Antifungal activity of citral, octanal and α-terpineol against Geotrichum citri-aurantii. Food Control, 37(1), 277–283.

Publicado

2021-07-20

Cómo citar

Noel-Martinez, K. C. ., Francisco Cruz, G. J. ., & Solis-Castro, R. L. . (2021). Bursera graveolens essential oil: Physicochemical characterization and antimicrobial activity in pathogenic microorganisms found in Kajikia audax. Scientia Agropecuaria, 12(3), 303-309. https://doi.org/10.17268/sci.agropecu.2021.033

Número

Sección

Artículos originales