Selección de líneas S1 de maíz morado reventón basado en el análisis de segregación de caracteres de valor

Autores/as

  • Hugo Huanuqueño Laboratorio de Biotecnología del programa de Cereales y Granos Andinos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, 15464, Lima https://orcid.org/0000-0002-9118-0662
  • Gastón Zolla Laboratorio de Biotecnología del programa de Cereales y Granos Andinos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, 15464, Lima https://orcid.org/0000-0002-2366-6310
  • Jorge Jimenez Laboratorio de Biotecnología del programa de Cereales y Granos Andinos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, 15464, Lima https://orcid.org/0000-0002-0432-1050

DOI:

https://doi.org/10.17268/sci.agropecu.2021.058

Palabras clave:

popcorn morado, maíz var. everta, pericarpio negro, antocianinas, volumen de expansión, maíz nativo peruano

Resumen

La mejora genética para la obtención de híbridos de maíz morado reventón, a partir de maíces nativos, está en su fase inicial. El desarrollo de híbridos no solo te da la posibilidad de complementar caracteres de valor, sino también, es un medio para aprovechar combinaciones superiores que expresan heterosis. Sin embargo, el paso previo es evaluar un gran número de líneas. Por ello, esta investigación busca dos objetivos: (1) analizar el modo de segregación de los caracteres de valor: volumen de expansión (VE), expansión de granos (EG), pericarpio negro (PN) y rendimiento de grano (RG) y (2) seleccionar líneas S1 sobresalientes para VE y PN. Para ello, 256 líneas segregantes fueron evaluados en tres experimentos, uno en Huánuco a 1986 msnm y dos en La Molina a 241 msnm. Los ensayos se instalaron bajo el diseño de Látice Simple 16x16 con dos repeticiones. Se determinó que, el modo de distribución continua con alelos mayormente aditivos es la que predomina en la expresión de las características VE, EG, PN y RG, sin embargo, en los caracteres VE, EG y RG, se observó cierta dominancia de genes con valores bajos y en PN se notó la presencia de tres modas, los cuales indicarían posiblemente la presencia de genes de efectos mayores. Considerando el modo de distribución y los valores fenotípicos de las 256 líneas S1 para los caracteres de valor VE y PN, se estableció un índice de selección que permitió identificar a 80 líneas sobresalientes que representan una presión de selección de 31,25%.

Citas

Aguilar-Hernández, A., Salinas-Moreno, Y., Ramírez-Díaz, J., Alemán-De la Torre, I., Bautista-Ramírez, E. & Flores-López, H. (2019). Anthocyanins and color in grain and cob of peruvian purple corn grown in Jalisco, Mexico. Revista Mexicana Ciencias Agrícolas, 10(5), 1071-1082.

Arnhold, E., Viana, J. M. S., Mora, F., Miranda, G. V., & Silva, R. G. (2010). Inbreeding depression and genetic components in Brazilian populations of popcorn. International Journal of Agriculture and Natural Resources, 37(3), 125-132.

Bos, I., & Caligari, P. (2007). Selection methods in plant breeding. Springer Science & Business Media.

Chalker‐Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and photobiology, 70(1), 1-9.

Chatham, L. A., & Juvik, J. A. (2021). Linking anthocyanin diversity, hue, and genetics in purple corn. G3, 11(2), jkaa062.

Chuntakaruk, H., Kongtawelert, P., & Pothacharoen, P. (2021). Chondroprotective effects of purple corn anthocyanins on advanced glycation end products induction through suppression of NF-κB and MAPK signaling. Scientific reports, 11(1), 1-13.

Coan, M. M. D., Pinto, R. J. B., Kuki, M. C., do Amaral Júnior, A. T., et al. (2019). Inheritance study for popping expansion in popcorn vs. flint corn genotypes. Agronomy Journal, 111(5), 2174-2183.

Cochran, W. G. (1941). An examination of the accuracy of lattice and lattice square experiments on corn. Iowa Agriculture and Home Economics Experiment Station Research Bulletin, 25(289), 1.

Coe, E. H., Neuffer, M. G., & Hoisington, D. A. (1988). The genetics of corn. Corn and corn improvement, 18, 81-258.

Colombo, R., Ferron, L., & Papetti, A. (2021). Colored Corn: An Up-Date on Metabolites Extraction, Health Implication, and Potential Use. Molecules, 26(1), 199.

Cone, K. C. (2007). Anthocyanin synthesis in maize aleurone tissue. In Endosperm (pp. 121-139). Springer, Berlin, Heidelberg.

Crumbaker, D. E., Johnson, I. J., & Eldredge, J. C. (1949). Inheritance of popping volume and associated characters in crosses between popcorn and dent corn 1. Agronomy journal, 41(5), 207-212.

Cui, H. X., Luo, Y., Mao, Y. Y., Yuan, K., Jin, S. H., Zhu, X. T., & Zhong, B. W. (2021). Purified anthocyanins from Zea mays L. cob ameliorates chronic liver injury in mice via modulating of oxidative stress and apoptosis. Journal of the Science of Food and Agriculture, 101(11), 4672-4680.

Da Silva, V. Q. R., Júnior, A. A., Scapim, C. A., Júnior, S. F., & Gonçalves, L. S. A. (2010). Inheritance for economically important traits in popcorn from distinct heterotic groups by Hayman’s diallel. Cereal Research Communications, 38(2), 272-284.

de Oliveira, G. H. F., Murray, S. C., Júnior, L. C. C., de Lima, K. M. G., de Morais, C. D. L. M., de Almeida, G. H., & Môro, G. V. (2020). Estimation and classification of popping expansion capacity in popcorn breeding programs using NIR spectroscopy. Journal of Cereal Science, 91, 102861.

Dofing, S. M., D'Croz‐Mason, N., & Thomas‐Compton, M. A. (1991). Inheritance of Expansion Volume and Yield in Two Popcorn✕ Dent Corn Crosses. Crop Science, 31(3), 715-718.

Felipe de Mendiburu (2020). agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-3. https://CRAN.R-project.org/package=agricolae

Ford, R. H. (2000). Inheritance of kernel color in corn: explanations & investigations. The American Biology Teacher, 181-188.

Gimenez, F. J. (2017). Ganancia Genética en Cebada Cervecera (Hordeum vulgare L.) en Argentina durante el período 1931-2007.

Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504.

He, J., & Giusti, M. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annual review of food science and technology, 1, 163-187.

Holton, T. A., & Cornish, E. C. (1995). Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell, 7(7), 1071.

Jones, D. F. (1918). The effect of inbreeding and crossbreeding upon development. Proceedings of the National Academy of Sciences of the United States of America, 4(8), 246.

Kim, J. T., Yi, G., Chung, I. M., Son, B. Y., Bae, H. H., et al. (2020). Timing and pattern of anthocyanin accumulation during grain filling in purple waxy corn (Zea mays L.) suggest optimal harvest dates. ACS omega, 5(25), 15702-15708.

Klug, W. S., Cummings, M. R., Spencer, C. A., et al. (2017) Essentials of Genetics. 7th Ed., Higher Education Press, Beijing, 446-464.

Li, J., Zhao, R., Jiang, Y., Xu, Y., Zhao, H., Lyu, X., & Wu, T. (2020). Bilberry anthocyanins improve neuroinflammation and cognitive dysfunction in APP/PSEN1 mice via the CD33/TREM2/TYROBP signaling pathway in microglia. Food & function, 11(2), 1572-1584.

Lu, H. J., Bernardo, R., & Ohm, H. (2003). Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers. Theoretical and applied genetics, 106, 423-427.

Meng, L., Qi, C., Wang, C., Wang, S., Zhou, C., et al. (2021). Determinant Factors and Regulatory Systems for Anthocyanin Biosynthesis in Rice Apiculi and Stigmas. Rice, 14(1), 1-18.

Ming, H., Wang, Q., Wu, Y., Liu, H., Zheng, L., & Zhang, G. (2021). Transcriptome analysis reveals the mechanism of anthocyanidins biosynthesis during grains development in purple corn (Zea mays L.). J. of Plant Physiology, 257, 153328.

Nilsson-Ehle, H. (1909). Kreuzungsuntersuchungen an hafer und Weizen. Lunds Universitets Arsskrift. East E M. Referate, 280-291.

Oh, C. J., Woo, J. K., Yi, K. U., Park, Y. C., Lee, H. Y., et al. (2021). Development of molecular markers for genotyping of Ruby, a locus controlling anthocyanin pigment production in Citrus with its functional analysis. Scientia Horticulturae, 289, 110457.

Paraginski, R. T., de Souza, N. L., Alves, G. H., Ziegler, V., de Oliveira, M., & Elias, M. C. (2016). Sensory and nutritional evaluation of popcorn kernels with yellow, white and red pericarps expanded in different ways. Journal of Cereal Science, 69, 383-391.

Peer, W. A., Brown, D. E., Tague, B. W., Muday, G. K., Taiz, L., & Murphy, A. S. (2001). Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant physiology, 126(2), 536-548.

Pelletier, M. K., Murrell, J. R., & Shirley, B. W. (1997). Characteri-zation of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis (Further evidence for differential regulation of" early" and" late" genes). Plant physiology, 113(4), 1437-1445.

Peniche, H. A., & Tiessen, A. (2020). Anthocyanin profiling of maize grains using DIESI-MSQD reveals that cyanidin-based derivatives predominate in purple corn, whereas pelargonidin-based molecules occur in red-pink varieties from Mexico. Journal of agricultural and food chemistry, 68(21), 5980-5994.

Pereira, M. G., & do Amaral Júnior, A. T. (2001). Estimation of genetic components in popcorn based on the nested design. Crop breeding and Applied biotechnology, 1(1), 1.

Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., et al. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13-14.

Pordesimo, L. O., Anantheswaran, R. C., Fleischmann, A. M., Lin, Y. E., & Hanna, M. A. (1990). Physical properties as indicators of popping characteristics of microwave popcorn. Journal of Food Science, 55(5), 1352-1355.

Ramírez, E. B., Varela, A. S., Téllez, L. C., Orozco, A. M., Sánchez, H. L., & Esquivel, G. E. (2020). Rendimiento y capacidad de expansión del grano de maíz en la raza Palomero Toluqueño. Revista mexicana de ciencias agrícolas, 11(7), 1607-1618.

Sa, K. J., Choi, I. Y., & Lee, J. K. (2020). The comparative gene expression concern to the seed pigmentation in maize (Zea mays L.). Genomics & Informatics, 18(3).

Salvador-Reyes, R., Rebellato, A. P., Pallone, J. A. L., Ferrari, R. A., & Clerici, M. T. P. S. (2021). Kernel characterization and starch morphology in five varieties of Peruvian Andean maize. Food Research International, 140, 110044.

Sayre, K.D., Verhulst, N. y Govaerts, B. (2012) Manual de determinación de rendimiento (No. 631.558 SAY. CIMMYT.). Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), México DF (México).

Selinger, D. A., & Chandler, V. L. (1999). A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway. The Plant Cell, 11(1), 5-14.

Soylu, S., & Tekkanat, A. (2007). Interactions amongst kernel properties and expansion volume in various popcorn genotypes. Journal of Food Engineering, 80(1), 336-341.

Suriano, S., Balconi, C., Valoti, P., & Redaelli, R. (2021). Comparison of total polyphenols, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. LWT, 144, 111257.

Tamay, J. E. (2021). Evaluación del contenido de antocianinas en bracteas de seis variedades de maíz morado (Zea mays L.) en cuatro pisos altitudinales, en el distrito de Ichocán provincia de San Marcos, región Cajamarca.

Tanaka, Y., Brugliera, F., & Chandler, S. (2009). Recent progress of flower colour modification by biotechnology. International journal of molecular sciences, 10(12), 5350-5369.

Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54(4), 733-749.

Tang, J., Yan, Y., Ran, L., Mi, J., Sun, Y. I., et al. (2017). Isolation, antioxidant property and protective effect on PC12 cell of the main anthocyanin in fruit of Lycium ruthenicum Murray. Journal of Functional Foods, 30, 97-107.

Valera, P. O. (2019). Efecto de la altitud en el rendimiento y en el contenido de antocianinas de maíz morado (Zea mays L.) en el distrito de Ichocán (Tesis). Universidad Nacional de Cajamarca.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. In: https://ggplot2.tidyverse.org

Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current opinion in plant biology, 5(3), 218-223.

Wurtzel, E. T., Cuttriss, A., & Vallabhaneni, R. (2012). Maize provitamin A carotenoids, current resources, and future metabolic engineering challenges. Frontiers in Plant Science, 3, 29.

Xiang, M., Ding, W., Wu, C., Wang, W., Ye, S., et al. (2021). Produc-tion of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis. Plant, 254(3), 1-17.

Yoshida, K., Mori, M., & Kondo, T. (2009). Blue flower color development by anthocyanins: from chemical structure to cell physiology. Natural product reports, 26(7), 884-915.

Zhang, T., Jia, X., & Xu, Z. (2018). An Alternative Analysis on Nilsson-Ehle’s Hybridization Experiment in Wheat—Theory of Dual Multiple Factors and Three Normal Distributions on Quantitative Inheritance (Continuation). Applied Mathematics, 9(08), 1005.

Ziegler, K.E. (2001). Popcorn. In: Hallauer, A.R., (editor) Specialty Corns. CRC Press, USA. p.199-234.

Žilić, S., Serpen, A., Akıllıoğlu, G., Gökmen, V., & Vančetović, J. (2012). Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and food chemistry, 60(5), 1224-1231.

Descargas

Publicado

2021-12-15

Cómo citar

Huanuqueño, H. ., Zolla, G. ., & Jimenez, J. . (2021). Selección de líneas S1 de maíz morado reventón basado en el análisis de segregación de caracteres de valor. Scientia Agropecuaria, 12(4), 535-543. https://doi.org/10.17268/sci.agropecu.2021.058

Número

Sección

Artículos originales