Lead and cadmium uptake by sunflower from contaminated soil and remediated with organic amendments in the form of compost and vermicompost

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2020.02.04

Keywords:

Heavy metals, Helianthus annuus, phytoremediation, organic amendments.

Abstract

In order to reduce heavy metal contamination in agricultural soils, we decided to assess the effect of organic amendments (compost and vermicompost). The work was carried out using sunflower as a fitorremediator. For this purpose, the agricultural soils of the Mantaro and Muqui localities of the Mantaro Valley were used. The results indicate that the soils of the locality of Muqui, contain the greatest amount of Pb and Cd, presenting negative effects on biomass production. The sunflower plant absorbs heavy metals as evidenced by the increased accumulation of lead and cadmium at the root of the sunflower, no significant differences were found between the accumulation of lead in stems and flowers, stems and leaves, for cadmium on the stems and leaves, confirming that the application of organic amendments contributes to solubilizing the Pb and Cd of the soil, in addition to contributing to further development of the crop. Cadmium Bioconcentration Factor (BCF) values (0.53 - 0.66) were better than lead (0.07 - 0.08), while Translocation Factor (FT) values indicated a sunflower capacity as a phytostabilizer, especially with the use of vermicompost (Pb: 1.2 - Cd: 1.4) in compost (Pb: 0.8 - Cd: 1.2).

References

Agnello, A.C.; Potysz, A.; Fourdrin, C.; et al. 2018. Impact pyrometallurgical slags on sunflower growth, metal accumulation and rhizosphere microbial communities. Chemosphere 208: 626-639.

Ahmadreza, Y.; Seyed, A.; Seyed, V.; et al. 2020. Heavy Metals Uptake of Salty Soils by Ornamental Sunflower, Using Cow Manure and Biosolids: A Case Study in Alborz city, Iran. Air, Soil and Water Research 13: 1-13.

Alaboudi, K.A.; Ahmed, B.; Brodie, G. 2018. Phytoremediation of Pb and Cd contaminated soils by usings unflower (Helianthus annuus) plant. Annal so Agricultural Sciences 63(1): 123-127.

Alberio, C.N.G.; Izquierdo, L.A.N.; Aguirrezábal. 2015. Sunflower Crop Physiology and Agronomy. In Chemistry, Production, Processing, and Utilization, 53-91.

Ali, H.; Khan, E.; Sajad, M.A. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91: 869-881.

Beltrán, F.A.; García, J.L.; Ruiz, F.H.; et al. 2016. Efectos de sustratos orgánicos en el crecimiento de seis variedades de chile jalapeño (Capsicum annuum L.). Ecosistemas y Recursos Agropecuarios 3(7): 143-149.

Burges, A.; Fievet, V.; Oustriere, N.; et al. 2020. Long-term phytomanagement with compost and a sunflower – Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. Science of the total Environment 700: 15.

Cameselle, C.; Gouveia, S. 2019. Phytoremediation of mixed contaminated soil enhanced with electric current. Journal of Hazardous Materials 361: 95-102.

Chabukdhara, M.; Nema, A.K. 2012. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicology and Environmental Safety 87: 57-64.

Delgadillo, A.E.; González, C.A.; Prieto, F.; et al. 2011. Revisión. Fitorremediación: una alternativa para eliminar la contaminación. Tropical and subtropical agroecosystems 14-2: 597-612.

Delgado, A.V.; González, F.; Hunter, R.J.; et al. 2006. Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science 309: 194-224.

Deng, H.; Ye, Z.H.; Wong, M.H. 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal contaminated sites in China. Environmental Pollution 132: 29-40.

Gao, Y.; Zhu, L. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55: 1169-1178.

Gomes, M.A.; Hauser, R.A., De Souza, A.N.; et al. 2016. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety 134: 133-147.

Gómez, L.; Contreras, A.; Bolonio, D.; et al. 2018. Phytoremediation with threes. Advances in Botanical Research 89: 281-321.

Goudriaan, J.; Van Laar, H. 2012. Modelling potential crop growth processes: textbook with exercises. Springer Science & Business Media 411 pp.

Govarthanana, M.; Mythilib, R.; Selvankumarb, T.; et al. 2018. Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed Wood. Ecotoxicology Environmental Safety 151: 279-284.

January, M.C.; Cutright, T.J.; Van Keulen, H.; et al. 2008. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals. Chemosphere 70: 531-537.

Li, X.; Wang, X.; Chen, Y.; et al. 2019. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment. Ecotoxicol 168: 1-8.

Lu, X.Y.; He, C.Q. 2005. Tolerance, uptake and accumulation of cadmium by Ricinus communis L. Journal of AgroEnvironment Science 24(4): 674-677.

Malkowski, E.; Kurtyka, R.; Kita, A.; et al. 2005. Accumulation of Pb and Cd and it effect on Ca distribution in Maize seedlings. Polish Journal of Environmental Studies 14(2): 203-207.

Marmiroli, M.; Antonioli, G.; Maestri, E.; et al. 2005. Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of Pb: an X-rayspectroscopy-basedanalysis. Environmental Pollution 134: 217-227.

Mudd, G.M. 2010. The environmental sustainability of mining in Australia: key mega-trends and looming constraints. Resource Policy 35(2): 98-115.

Munive, R.; Loli, O.; Azabache, A.; et al. 2018. Fitorremediación con Maíz (Zea mays L.) y compost de Stevia en suelos degradados por contaminación con metales pesados. Scientia Agropecuaria 9(4): 551-560.

Navarro, J.P.; Aguilar, A.I.; López, J.R. 2007. Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Asociación Española de Ecología Terrestre. Ecosistemas revista científica de ecología y medio ambiente 16(2): 10-25.

Naveedullah, M.Z.; Yu, Ch.; Shen, H.; et al. 2013. Risk Assessment of Heavy Metals Pollution in Agricultural Soils of Siling Reservoir Watershed in Zhejiang Province, China. BioMed Research International. 10 pp.

Nigam, R.; Srivastava, S.; Prakash, S.; et al. 2001. Cadmium mobilization and plant availability - the impact of organic acids commonly exuded from roots. Plant Soil. 230: 107-113.

Niu, Z.X.; Sun, L.N. 2017. Evaluation of the cadmium and lead phytoextraction by castor bean (Ricinus communis L.) in hydroponics. Earth and Environmental Science 69: 1-6.

Prasetia, H.; Sakakibara, M.; Takehara, A.; et al. 2017. Heavy metals accumulation by Athyrium yokoscence in a mine area, Southwestern Japan. In Conf. Series: Earth and Environmental Science 71: 012025.

Rog-Young, K.; Jeong-Ki, Y.; Tae-Seung, K.; et al. 2015. Bioavailability of heavy metals in soils: definitions and practical implementation-a critical review. Environ Geochem Health 37(6): 1041-1061.

Rostami, S.; Azhdarpoor, A. 2019. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere 220: 818-827.

Rubenacker, A.; Campitelli, P.; Sereno, R.; et al. 2011. Recuperación Química de un suelo degradado mediante la utilización de un vermicompost. Avances en Ciencias e Ingeniería 2(2): 83-95.

Saavedra, M. 2017. Biodegradación de Alperujo utilizando hongos del género Pleurotus y anélidos de la especie Eisenia foetida. Tesis de doctorado, Universidad de Granda. Departamento de Biotecnología, Granada, España. 195 pp.

Shahid, M.; Arshad, M.; Kaemmerer, M.; et al. 2012. Long-Term Field Metal Extraction by Pelargonium: Phytoextraction Efficiency in Relation to Plant Maturity. International Journal of Phytoremediation 14: 493-505.

Tapia, Y.; Loch, B.; Castillo, B. 2020. Accumulation of Sulphur in Atriplex nummularia Cultivated in Mine Tailings and Effect of Organic Amendments Addition. Water Air Soil Pollut 231: 8.

Upadhyay, N.; Verma, S.; Singh, P.; et al. 2016. Soil ecophysiological and microbiological indices of soil health: a study of coal mining site in Sonbhadra, Uttar Pradesh. Journal of Soil Science and Plant Nutrition 16(3): 778-800.

Yang, W.; Wang, S.; Ni, W. 2019. Enhanced Cd-Zn-Pb-contaminated soil phytoextraction by Sedum alfredii and the rhizosphere bacterial community structure and function by applying organic amendments. Plant Soil 444: 101-118.

Yoon, J.; Cao, X.; Zhou, Q.; et al. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368: 456-464.

Zhang, Y.; Tian, Y.; Hua, D.; et al. 2019. Is vermicompost the possible in situ sorbent, Immobilization of Pb, Cd and Cr in sediment with sludge derived vermicompost, a column study. Journal of Hazardous Materials 367: 83-90.

Zhao, X.; Joo, J.C.; Lee, J.K.; et al. 2019. Mathematical estimation of heavy metal accumulations in Helianthus annuus L. with a sigmoid heavy metal uptake model. Chemosphere 220: 965-973.

Zhi-Xin, N.; Li-Na, S.; Tie-Heng, S.; et al. 2007. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. Journal of Environmental Sciences 19(8): 961-967.

Published

2020-06-08

How to Cite

Munive, R., Gamarra, G., Munive, Y., Puertas, F., Valdiviezo, L., & Cabello, R. (2020). Lead and cadmium uptake by sunflower from contaminated soil and remediated with organic amendments in the form of compost and vermicompost. Scientia Agropecuaria, 11(2), 177-186. https://doi.org/10.17268/sci.agropecu.2020.02.04

Issue

Section

Original Articles