Crop scheduling improvements for rainfed agriculture in the high jungle of Peru

Authors

  • Enrique Meseth National Sun Yat-Sen University, Kaohsiung
  • Jason C. S. Yu National Sun Yat-Sen University, Kaohsiung

DOI:

https://doi.org/10.17268/sci.agropecu.2014.04.03

Keywords:

crop scheduling, crop water requirements, rainfed irrigation, water management, high jungle agriculture

Abstract

This work was aimed to improve the water management for agriculture by applying efficient crop schedules in Vilcabamba and similar areas of the high jungle, which can satisfy most of the water requirements with rainfed agriculture to maximize the crops yield. For this purpose, two field practices were carried out during the dry (September 2012) and wet season (February 2013) to measure rivers and canals flows with the velocity/area method; 19 soil samples were collected on-site and analyzed, presenting prevalent sandy loam and loam textures. Cropwat program was used to estimate crop water requirements and scheme irrigation requirements, resulting in a maximum flow capacity of 1.72 l s-1 in May, during the dry season. The flow capacity can be satisfied, since small ditches convey approximately 2 to 6 l s-1 on the same season. The research findings indicate that rainfed farming can be practised, yet an initial pre-irrigation needs to be applied, for crops should not be water stressed. However, if soil is not pre-irrigated the production can be affected, with vegetables and potato crop yields being reduced by 4.7% and 1.4% respectively. To minimize these effects, both crops are suggested to be sowed one month later, adapting their growth period to the rainy season.

References

Al-Najar, H. 2011. The integration of FAO-Cropwat model and GIS techniques for estimating irrigation water requirement and its application in the Gaza Strip. Natural Resources 2, 3: 146-154.

Annandale, J.; Jovanovic, N.; Benadé, N.; Allen, R. 2002. Software for missing data error analysis of Penman-Monteith reference evapotranspiration. Irrigation Science 21, 2: 57-67.

Checya, C. 2011. Diagnóstico agropecuario de la micro cuenca de Vilcabamba, Distrito de Vilcabamba, La Convención, Región Cusco. Tesis de bachillerato, Facultad de Agronomía y Zootecnia, Universidad Nacional de San Antonio de Abad del Cusco. Cusco, Perú.

Clarke, D.; Andrews, P.; Meseth, E.; Sala R.; Deom, J.M. 2010. Analysis of the hydraulics of the irrigation canals of Otar, Kazakhstan. Water Science & Technology: Water Supply-WSTWS 10, 3: 453-461.

Clarke, D.; Sala R.; Deom, J.M.; Meseth, E. 2005. Reconstructing irrigation at Otrar Oasis, Kazakhstan AD 800-1700. Irrigation and Drainage 54: 375-388.

Empresa de Generación Eléctrica Machupicchu S.A. - EGEMSA. 2008. Estudio de Impacto Ambiental de la Central Hidroeléctrica Santa Teresa. Capítulo III: Línea base ambiental. EGEMSA. Cusco, Perú.

El Nahry, A. H.; Ali, R. R.; El Baroudyc, A. A. 2010. An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques. Agricultural Water Management 98: 517-551.

Gardner, A.S.; Sharp, M.J., Koerner, R.M.; Labine, C.; Boon, S.; Marshall, S.J.; Burgess, D.O.; Lewis, D. 2009. Near-surface temperature lapse rates over arctic glaciers and their implications for temperature downscaling. American Meteorological Society 22: 4281-4298.

Glickman, T. S. 2000. Glossary of Meteorology. American Meteorological Society 2: 855.

Guzman, D. 2008. Sondeo Rural Rápido en la Subcuenca de Vilcabamba del Distrito de Vilcabamba, La Convención, Cusco. Tesis de bachillerato, Facultad de Agronomía y Zootecnia, Universidad Nacional de San Antonio de Abad del Cusco. Cusco, Perú.

IGN - Instituto Geográfico Nacional. 2010. Mapas temáticos digitalizados del Distrito de Vilcabamba incluyendo topografía, hidrología, sitios arqueológicos y vegetación. Instituto Geográfico Nacional. Lima, Perú.

Instituto de Manejo del Agua y Medio Ambiente - IMA. 2010. Informe final de demanda hídrica actual y futura en la Región Cusco en el marco del programa de adaptación al cambio climático fase II y III - nivel regional. Proyecto Especial Instituto de Manejo del Agua y Medio Ambiente. IMA. Lima, Perú.

Kuo, S.F.; Ho, S.S.; Liu, C.W. 2005. Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan. Agricultural Water Management 82: 433-451.

Servicio Nacional de Meteorología e Hidrología del Perú - SENAMHI. 2013. Datos históricos meteorológicos e hídricos en Cusco. SENAMHI. Cusco, Perú.

Vallet, A.; Bertrand, C.; Mudry, J. 2013. Effective rainfall: a significant parameter to improve understanding of deep-seated rainfall triggering landslide - a simple computation temperature based method applied to Séchilienne unstable slope (French Alps). Hydrology and Earth System Sciences 10: 8945-8991.

Received: 01/07/14

Accepted: 03/12/14

Corresponding author: enriquem3@hotmail.com (E. Meseth)

Published

2014-12-20

How to Cite

Meseth, E., & Yu, J. C. S. (2014). Crop scheduling improvements for rainfed agriculture in the high jungle of Peru. Scientia Agropecuaria, 5(4), 187-197. https://doi.org/10.17268/sci.agropecu.2014.04.03

Issue

Section

Original Articles