Genetic improvement in coffee (Coffea arabica L.) cultivation: Methodological advances and application proposal using traditional methods and biotechnological tools
DOI:
https://doi.org/10.17268/sci.agropecu.2025.035Keywords:
coffee, genetic improvement, Pedigree, backcrossing, F1 hybridAbstract
Coffee is a very important crop both nationally and globally, with Peru being the leading exporter of organic coffee, is native to Africa, and the most important species is Coffea arabica. The objective of this work was to carry out a literature review about the germplasm used and the genetic improvement methods used in coffee cultivation, with the purpose of proposing an improvement scheme that includes the application of traditional methods and biotechnological tools for improvement of coffee cultivation. Information from genetic improvement programs in Brazil, Colombia and Central America and other institutions dedicated to the management, research and commercialization of coffee cultivation was used. The most used methods for genetic improvement are Pedigree, backcrossing and the production of F1 hybrids through somatic embryogenesis. In Brazil, Colombia and other countries, molecular markers are being used to develop cultivars with rust resistance in a shorter period. Finally, the breeding strategy to be implemented is the pyramiding of genes for rust resistance using molecular markers. This strategy consists of introgressing the SH3 gene present in the C. liberica species into the catimor cultivar, which is highly productive and has the rust resistance genes SH6, SH7, SH8 and SH9. This proposal is of great importance in countries like Peru, where coffee represents a strategic export product. Breeding schemes that incorporate gene pyramiding using molecular markers not only improve the efficiency of selecting cultivars with resistance to coffee rust but can also accelerate breeding programs by reducing lengthy phenotypic evaluation cycles. In practice, this could translate into more productive cultivars that are resistant to biotic and abiotic factors and adapted to different types of environments. This would mark a new stage in coffee genetic improvement in Peru, based on precision agriculture and sustainability.
References
Adhikari, S., Saha, S., Biswas, A., Rana, T., Bandyopadhyay, T., & Ghosh, P. (2017). Application of molecular markers in plant genome analysis: a review. The Nucleus, 60(3), 283-297. https://doi.org/10.1007/s13237-017-0214-7
Akter, A., Hassan, L., Nihad, S., Hasan. M., Robin, A., Khatun, M., Tabassum, A., & Latif, M. (2024). Pyramiding of bacterial blight resistance genes into promising restorer BRRI31R line through marker-assisted backcross breeding and evaluation of agro-morphological and physiochemical characteristics of developed resistant restorer lines. PLoS One, 19(6), e0301342. https://doi.org/10.1371/journal.pone.0301342
Alkimim, E., Caixeta, E., Sousa, T., Pereira, A., Oliveira, A., Zambolim, L., & Sakiyama, N. (2017). Marker-assisted selection provides arabica coffee with genes from other Coffea species targeting on multiple resistance to rust and coffee berry disease. Molecular Breeding, 37, 6. https://doi.org/10.1007/s11032-016-0609-1
Amiteye, S. (2021) Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon, 7(10), e08093. https://doi.org/10.1016/j.heliyon.2021.e08093
Angelo, P., Sera, G., Shigueoka, L., & Caixeta, E. (2023). Rust resistance SH3 loci in Coffea spp. Physiological and Molecular Plant Pathology, 123, 102111. https://doi.org/10.1016/j.pmpp.2023.102111
Asociación Nacional del Café (2019). Guía de variedades de café. Guatemala.48 pp.
Astorga, C. (1999). Caracterización de variedades cultivadas de café (Coffea arabica L.) conservadas en el banco de germoplasma del CATIE. Tesis Maestría - CATIE. Turrialba, Costa Rica.
Attamah, P, Kusi, F., Kena, A., Awuku, F., Lamini, S.,Mensah, G., Zackaria, M. Owusu, E. & Akromah, R. (2024). Pyramiding aphid resistance genes into the elite cowpea variety, Zaayura, using marker-assisted backcrossing, Heliyon, 10(11), e31976. https://doi.org/10.1016/j.heliyon.2024.e31976.
Barka, G., Caixeta, E., Ferreira, S., & Zambolim, L. (2020). In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: a functional marker-based approach. PLoS ONE, 15, e0222747. https://doi.org/10.1371/journal.pone.0222747
Bellundagi, A., Ramya, K., Krishna, H., Neelu, J., Shashikumara, P., Singh, K., Singh, G., & Prabhu, K. (2022). Marker-assisted backcross breeding for heat tolerance in bread wheat (Triticum aestivum L.). Frontiers in Genetics, 13, e1056783. https://doi.org/10.3389/fgene.2022.1056783
Biswas, P., Santelices, R., Mendoza, R., Lopena, V., Arbelaez, J., Manigbas, N., Cobb, J., Collard, B., & Islam, M. (2024). Assessment of efficiency of breeding methods in accelerating genetic gain in rice. Agronomy, 14(3), 566. https://doi.org/10.3390/agronomy14030566
Benti, T., Gebre, E., Tesfaye, K., Berecha, G., Lashermes, P., Kyallo, M., & Kouadio, N. (2020). Genetic diversity among commercial arabica coffee (Coffea arabica L.) varieties in Ethiopia using simple sequence repeat markers. Journal of Crop Improvement, 35(2), 147–168. https://doi.org/10.1080/15427528.2020.1803169
Bramel, P., Krishnan, S., Horna, D., Lainoff, B., & Montagnon, C. (2017). Global Conservation Strategy for Coffee Genetic Resources. CROP TRUST and World Coffee Research.
Brito, G., Caixeta, E., Gallina, A., Zambolim, E., Zambolim, L., Diola, V., & Loureiro, M. (2010). Inheritance of coffee leaf rust resistance and identification of AFLP markers linked to the resistance gene. Euphytica, 173, 255-264. https://doi.org/10.1007/s10681-010-0119-x
Caixeta, E. T., de Resende, M. D. V., Alkimim, E. R., Sousa, T. V., de Oliveira, A. C. B., Pereira, A. A., & Alves, R. S. (2022). Aceleração do melhoramento do cafeeiro via seleção genômica: agilidade e eficácia no lançamento de novas cultivares (Documentos, n.º 17). Embrapa Café.
Caixeta, E., Pestana, K., & Pestana, R. (2015). Melhoramento do cafeeiro: ênfase na aplicação dos marcadores moleculares. En G. García, E. F. dos Reis, J. S. Lima, A. C. Xavier & W. N. Rodrigues (Orgs.), Tópicos Especiais em Produção Vegetal (Vol. 1, pp. 154–179). Alegre: CCAUFES.
Cortina, H., Acuña, J. R., Moncada, M., Herrera, J., & Molina, D. (2013). Variedades de café: Desarrollo de variedades. En Federación Nacional de Cafeteros de Colombia (Ed.), Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura (Vol. 1, pp. 169–202). Cenicafé. https://doi.org/10.38141/cenbook-0026_09
Davis, A., & Rakotonasolo, F. (2021). Six new species of coffee (Coffea) from northern Madagascar. Kew Bulletin, 76, 497–511.https://doi.org/10.1007/s12225-021-09952-5
Da Silva, R., Caixeta, E., Silva, L., Sousa, T., Barreiros, P., Oliveira, A., Pereira, A., Barreto, C., & Nascimento, M. (2024). Identification of SNP markers and candidate genes associated with major agronomic traits in Coffea arabica. Plants, 13(13), 1876. https://doi.org/10.3390/plants13131876
De Almeida, D., Caixeta, E., Moreira, K., de Oliveira, A., de Freitas, K., Pereira, A., Rosado, R., Zambolim, L., & Cruz, C. (2021). Marker-assisted pyramiding of multiple disease resistance genes in coffee genotypes (Coffea arabica). Agronomy, 11(9),1763. https://doi.org/10.3390/agronomy11091763
De Almeida, D., Castro, I., Mendes, T., Alves, D., Barka, G., Barreiros, P., Zambolim, L., Sakiyama, N., & Caixeta, E. (2021). Receptor-Like Kinase (RLK) as a candidate gene conferring resistance to Hemileia vastatrix in coffee. Scientia Agricola, 78(6), e20200023. https://doi.org/10.1590/1678-992X-2020-0023.
De Mori, G., & Cipriani, G. (2023). Marker-assisted selection in breeding for fruit trait improvement: A Review. International Journal of Molecular Sciences, 24(10), 8984. https://doi.org/10.3390/ijms24108984
Diola, V., Brito, G., Caixeta, E., Zambolim, E., Sakiyama, N., & Loureiro, M. (2011). High-density genetic mapping for coffee leaf rust resistance. Tree Genetics & Genomes, 7(6), 1199-1208. https://doi.org/10.1007/s11295-011-0406-2
Etienne, H., Breitler, J.-C., Brossier, J.-R., Awada, R., Laflaquière, L., Amara, I., & Georget, F. (2024). Coffee somatic embryogenesis: Advances, limitations, and outlook for clonal mass propagation and genetic transformation. En F. M. Da Matta & J. C. Ramalho (Eds.), Advances in Botanical Research (Vol. 114, pp. 349–388). Academic Press. https://doi.org/10.1016/bs.abr.2024.04.008
Feitosa, F. M., dos Santos, I. G., Pereira, A. A., de Oliveira, A. C. B., & Caixeta, E. (2024). Gene pyramiding for achieving enhanced disease and insect multiple resistances in Coffea arabica. Crop Science, 64(5), 2736–2747. https://doi.org/10.1002/csc2.21303
Flórez, C., Maldonado, C., Cortina, H., Moncada, M., Montoya, E., Ibarra, L., Unigarro, C., Rendón, J., & Duque, H. (2016). Cenicafé 1: Nueva variedad de porte bajo altamente productiva resistente a la roya y al CBD con mayor calidad física del grano. Avances Técnicos Cenicafé, 469, 1-8. https://doi.org/10.38141/10779/0469
Gichuru, E., Agwanda, C., Combes, M., Mutitu, E., Ngugi, E., Bertrand, B., & Lashermes, P. (2008). Identification of molecular markers linked to a gene conferring resistance to coffee berry disease (Colletotrichum kahawae) in Coffea arabica. Plant Pathology, 57(6), 1117–1124. https://doi.org/10.1111/j.1365-3059.2008.01846.x
Gimase, J., Thagana, W., Omondi, C., Cheserek, J., Gichimu, B., Gichuru, E., Ziyomo, C., & Sneller, C. (2020). Genome-wide association study identifies the genetic loci conferring resistance to coffee berry disease (Colletotrichum kahawae) in Coffea arabica var. Rume Sudan. Euphytica, 216, 86. https://doi.org/10.1007/s10681-020-02621-x
Gokavi, N., Gangadharappa, P., Satish, D., Nishani, S., Hiremath, J., & Koulagi, S. (2023) Phenotypic and genotypic variability among exotic arabica coffee genotypes using morphological and molecular markers (SRAP). Ecological Genetics and Genomics, 29, 100214. https://doi.org/10.1016/j.egg.2023.100214.
Góngora, C., Gil, Z., Constantino, L., & Benavides, P. (2023). Sustainable strategies for the control of pests in coffee crops. Agronomy, 13(12), 2940. https://doi.org/10.3390/agronomy13122940
González, L., Cortina, H., & Herrera, J. (2009). Validación de marcadores moleculares ligados al gen SH3 de resistencia contra la roya en introducciones de la colección colombiana de café. Cenicafe, 60(4),374-389.
Guerra, L., Diniz, I., Gil, H., Loureiro, A., Pereira, A. P., Tavares, S., Batista, D., Várzea, V., & Lavado, M. (2023). Coffee leaf rust resistance: An overview. En I. L. Ingelbrecht, M. d. C. L. da Silva, & J. Jankowicz-Cieslak (Eds.), Mutation breeding in coffee with special reference to leaf rust (pp. 13–42). Springer. https://doi.org/10.1007/978-3-662-67273-0_2
Gutiérrez, D., Bonilla, M., Viáfara, R., & Cárdenas, H. (2024). Caracterización molecular de accesiones de Coffea arabica L. de Trujillo, Valle del Cauca, Colombia usando marcadores SSR. Journal of Neotropical Biology, 21(1), 50–60. https://doi.org/10.5216/rbn. v21i1.78154
Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 19(1), 128. https://doi.org/10.1186/s43141-021-00231-1
Herridge, R., Macknight, R., & Brownfield, L. (2019). Prospects for F1 hybrid production in ryegrass. New Zealand Journal of Agricultural Research, 63(3), 405–415. https://doi.org/10.1080/00288233.2018.1559867
Herrera, F., Rubí, M., & Rodrigo, C. (2023). Café mexiquense. Producción, mercado y política pública. Instituto Interamericano de Cooperación para la Agricultura (IICA).
Herrera, J. C., & Lambot, C. (2017). Chapter 1 – The coffee tree—Genetic diversity and origin. En D. W. Illy & L. Navarini (Eds.), The craft and science of coffee (pp. 1–16). Academic Press. https://doi.org/10.1016/B978-0-12-803520-7.00001-3
Khan, N. (23017). F1 hybrid. Reference Module in Life Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.06413-X
Li, C., Wang, W., Pan, Y., Liu, F., He, J., Liu, C., Cao, J., Zhang, X., Zhao, J., & Gai, J. (2022). Germplasm sources, genetic richness, and population differentiation of modern Chinese soybean cultivars based on pedigree integrated with genomic-marker analysis. Frontiers in Plant Science, 13, 945839. https://doi.org/10.3389/fpls.2022.945839
Liu, R., Lu, J., Zhou, M. et al. (2020). Developing stripe rust resistant wheat (Triticum aestivum L.) lines with gene pyramiding strategy and marker-assisted selection. Genetic Resources and Crop Evolution, 67, 381–391. https://doi.org/10.1007/s10722-019-00868-5
López, L., Quiroga, J., Arango, N., Ramírez, C., & Flórez, C. (2024). Characterization in populations of Coffea arabica L. for resistance to CBD using molecular markers. Coffee Science, 19, e192230. https://doi.org/10.25186/.v19i.2230
McCook, S., & Montero‑Mora, A. (2024). Coffee breeding in a time of crisis: F₁ hybrids in Central America since 1990. Plants, People, Planet, 6(5), 1070–1079. https://doi.org/10.1002/ppp3.10480
Mahé, L., Combes, M., Várzea, V., Guilhaumon, C., & Lashermes, P. (2008). Development of sequence characterized DNA markers linked to leaf rust (Hemileia vastatrix) resistance in coffee (Coffea arabica L.). Molecular Breeding, 21(1), 105–113. https://doi.org/10.1007/s11032-007-9112-z
Mariz, B. L., Caixeta, E. T., Resende, M., Oliveira, A., Almeida, D., & Alves, D. (2025). Exploring the Genetic Potential for Multi-Resistance to Rust and Other Coffee Phytopathogens in Breeding Programs. Plants, 14, 391. https://doi.org/10.3390/ plants14030391
Matamoros, A., Mesén, F., & Jiménez, L. (2020). Efecto de fitohormonas y fertilizantes sobre el enraizamiento y crecimiento de mini-estaquillas de híbridos F1 de café (Coffea arabica). Revista De Ciencias Ambientales, 54(1), 58-75. https://doi.org/10.15359/rca.54-1.4
Mawasid, F., Syukur, M., Trikoesoemaningtyas, T., & Wibisono, K. (2024). Yield and yield components of tomato (Solanum lycopersicum) selected through pedigree method in the lowlands, Bogor-Indonesia. Agronomía Mesoamericana, 35, 52476. https://doi.org/10.15517/am.2024.52476
Medina, H., Carvalho, A., Sondahl, M., Fazuoli, L., & Costa, W. (1984). Coffee breeding and related evolutionary aspects. Plant Breeding Reviews, 2, 157-193.
Mendoza, G., Guzmán, O., & Salinas, A. (2021). Manejo de la broca del café, Hypothenemus hampei (Ferrari, 1867) (Coleoptera: Curculionidae: Scolytinae), con atrayentes etanólicos en cultivos de café de Coatepec, Veracruz, México. Revista Chilena de Entomología, 47(2), 265-273. https://dx.doi.org/10.35249/rche.47.2.21.14
Migicovsky, Z., & Myles, S. (2017). Exploiting wild relatives for genomics-assisted breeding of perennial crops. Frontiers in Plant Science, 8, 460. https://doi.org/10.3389/fpls.2017.00460
Millet, C. P., Delahaie, B., Georget, F., Allinne, C., Solano-Sánchez, W., Zhang, D., Jeune, W., Toniutti, L., & Poncet, V. (2025). Guadeloupe and Haiti's coffee genetic resources reflect the crop's regional and global history. Plants, People, Planet, 7(1), 245–262. https://doi.org/10.1002/ppp3.10584
Mishra, M., Huded, A., Jingade, P., Muniswamy, & Bychappa, M. (2022). Molecular characterization and genetic structure analysis of Coffea arabica and Coffea canephora cultivars from India using SCoT markers. Ecological Genetics and Genomics, 23, 100117. https://doi.org/10.1016/j.egg.2022.100117
Moreira, A., Vélez, J., Intra, S., & Garcés, F. (2023). Enfermedades que afectan el cultivo de café: Elucidando el ciclo de vida de Roya, Mal de Hilachas y Cercosporiosis. Scientia Agropecuaria, 14(3), 395-412. https://dx.doi.org/10.17268/sci.agropecu.2023.035
Noir, S., Anthony, F., Bertrand, B., Combes, M., & Lashermes, P. (2003). Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in Coffea arabica. Plant Pathology, 52(1), 97–103. https://doi.org/10.1046/j.1365-3059.2003.00795.x
Pembleton, L. W., Shinozuka, H., Wang, J., Spangenberg, G. C., Forster, J. W., & Cogan, N. O. I. (2015). Design of an F₁ hybrid breeding strategy for ryegrasses based on selection of self‑incompatibility locus‑specific alleles. Frontiers in Plant Science, 6, 764. https://doi.org/10.3389/fpls.2015.00764
Plataforma del Estado Peruano (2022). Perú es el primer productor y exportador mundial de café orgánico junto con Etiopía. https://www.gob.pe/institucion/midagri/noticias/647409-peru-es-el-primer-productor-y-exportador-mundial-de-cafe-organico-junto-con-etiopia
Prakash, N., Muniswamy, B., Hanumantha, B., Sreenath, H., Sundaresha, K., Suresh, N., Santhosh, P., Soumya, P., Asha, B., & Bhat, S. (2011). Marker assisted selection and breeding for leaf rust resistance in coffee (Coffea arabica L.) some recent leads. Indian Journal of Genetics and Plant Breeding, 71, 185-189.
PROMECAFE - Programa Cooperativo Regional para el Desarrollo Tecnológico y Modernización de la Caficultura (2023). https://promecafe.net/?page_id=20730
Ramalingam, J., Raveendra, C., Savitha, P., Vidya, V., Chaithra, T., Velprabakaran, S., Saraswathi, R., Ramanathan, A., Arumugam, M., Arumugachamy, S., & Vanniarajan, C. (2020). Gene pyramiding for achieving enhanced resistance to bacterial blight, blast, and sheath blight diseases in rice. Frontiers in Plant Science, 11, 591457. https://doi.org/10.3389/fpls.2020.591457
Saavedra, L., Caixeta, E., Barka, G., Borém, A., Zambolim, L., Nascimento, M., Cruz, C., Oliveira, A., & Pereira, A. (2023). Marker-assisted recurrent selection for pyramiding leaf rust and coffee berry disease resistance alleles in Coffea arabica L. Genes, 14(1), 189. https://doi.org/10.3390/genes14010189
Salojärvi, J., Rambani, A., Yu, Z. et al. (2024). The genome and popu-lation genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars. Nature Genetics, 56, 721–731. https://doi.org/10.1038/s41588-024-01695-w
Santos, N., Magat, M., Mondragón, M., Cao, E., & Santos D. (2023). Genetic profiling of locally registered Philippine coffee using molecular markers linked to resistance against diseases and pests. Biodiversitas, 24, 4136-4144. https://doi.org/10.13057/biodiv/d240752
Silva, A., Ariyoshi, C., Shigueoka, L., Pereira, L., & Sera, G. (2023). Assisted selection using molecular markers linked to rust resistance SH3 gene in Coffea arabica. Crop Breeding and Applied Biotechnology, 23(4), e445323413. https://doi.org/10.1590/1984-70332023v23n4a48
Silva, M., Guerra-Guimarães, L., Diniz, I., Loureiro, A., Azinheira, H., Pereira, A., Tavares, S., Batista, D., & Várzea, V. (2022). Una descripción general de los mecanismos implicados en las interacciones café- Hemileia vastatrix: perspectivas de plantas y patógenos. Agronomía, 12(2), 326. https://doi.org/10.3390/agronomy12020326
Silva, R., Zambolim, L., Castro, I., Rodrigues, S., Cruz., & Caixeta E. (2018). The Híbrido de Timor germplasm: identification of molecular diversity and resistance sources to coffee berry disease and leaf rust. Euphytica, 214, 153. https://doi.org/10.1007/s10681-018-2231-2
Siqueira de Carvalho, C., Lucas, L., Hiroshi, G., Braz, J., Roque de Almeida, S., Santinato, F., & Lenzi, A. (2022). Catálogo de Cultivares de café arábica (Documentos 16). Embrapa Café.
Song, L., Wang, R., Yang, X., Zhang, A., & Liu, D. (2023). Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat (Triticum aestivum L.). Agriculture, 13(3), 642. https://doi.org/10.3390/agriculture13030642
Sousa, T., Caixeta, E., y Alkimim, E., Baião, A., Alves, A., Zambolim, L., & Sussumu, N. (2017). Molecular markers useful to discri-minate Coffea arabica cultivars with high genetic similarity. Euphytica, 213, 75. https://doi.org/10.1007/s10681-017-1865-9
Statista (2023). Ranking de los 15 principales países productores de café a nivel mundial en 2022.https://es.statista.com/estadisticas/600243/ranking-de-los-principales-productores-de-cafe-a-nivel-mundial/
Subburaj, S., Thulasinathan, T., Sakthivel, V., Ayyenar, B., Kambale, R., Rajagopalan, V. R., Manickam, S., Rajasekaran, R., Chellappan, G., Thiyagarajan, K., Swaminathan, M., & Muthurajan, R. (2024). Genetic Enhancement of Blast and Bacterial Leaf Blight Resistance in Rice Variety CO 51 through Marker-Assisted Selection. Agriculture, 14(5), 693. https://doi.org/10.3390/agriculture14050693
Taiti, C., Vivaldo, G., Mancuso, S. et al. (2025). Volatile organic compounds (VOCs) fingerprinting combined with complex network analysis as a forecasting tool for tracing the origin and genetic lineage of Arabica specialty coffees. Scientific Reports, 15, 13709. https://doi.org/10.1038/s41598-025-97162-5
Talhinhas, P., Batista, D., Diniz, I., Vieira, A., Silva, D., Loureiro, A., Tavares, S., Pereira, A., Azinheira, H., Guerra, L., Várzea, V., & Silva, M. (2017). The coffee leaf rust pathogen Hemileia vastatrix: one and a half centuries around the tropics. Molecular Plant Pathology, 18(8),1039-1051. https://doi.org/10.1111/mpp.12512
Thorat, S., Gangwar, R., & Sisodiya, D. (2024). Gene pyramiding an advanced approach for disease management in rice: A review. Innovations in Agriculture, 7, 1-12. https://doi.org/10.3897/ia.2024.125404
Tirnaz, S., Zandberg, J., Thomas, W, Marsh, J., Edwards, D., & Batley, J. (2022). Application of crop wild relatives in modern breeding: An overview of resources, experimental and computational methodologies. Frontiers in Plant Science, 13, 1008904. https://doi.org/10.3389/fpls.2022.1008904
Tourrette, É., Falque, M., & Martin, O. C. (2021). Enhancing backcross programs through increased recombination. Genetics Selection Evolution, 53, 25. https://doi.org/10.1186/s12711-021-00619-0
Valencia, A., Morales, A., Moncada, M., Cortina, H., & Herrera, J. C. (2017). Introgression of the SH3 gene resistant to rust (Hemileia vastatrix) in improved lines of CASTILLO variety (Coffea arabica L.). Journal of Plant Breeding and Crop Science, 9(8), 130–138. https://doi.org/10.5897/JPBCS2017.0664
Virginio, E., Medina, B., Zambolim, L., Avelino, J., Lizardo, C., Barquero, M., Chocooj, M. E., Grande, J., Bolaños, R., León, R., & Obin, D. (2021). Estado del arte sobre el conocimiento de razas, monitoreo y control de la roya del café en los países de PROMECAFE. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE).
Virginio, E., & Astorga, C. (2021). Estado del arte y manejo de los híbridos F1 (Coffea arabica L.) del Programa de Mejoramiento Genético de PROMECAFE (Serie Técnica, Boletín Técnico No. 112). Centro Agronómico Tropical de Investigación y Enseñanza (CATIE).
Virginio, E., & Astorga, C. (2015). Prevención y control de la roya del café: Manual de buenas prácticas para técnicos y facilitadores (Serie Técnica, Manual Técnico No. 131). Centro Agronómico Tropical de Investigación y Enseñanza (CATIE).
World Coffee Research (2024). Catálogo de variedades de café. https://varieties.worldcoffeeresearch.org/arabica/varieties
Yunita, R., Oktavioni, M., Chaniago, I., Syukriani, L., Setiawan, M., & Jamsari, J. (2020). Analysis of genetic diversity of Arabica coffee (Coffea arabica L.) in Solok Regency by SRAP molecular markers. IOP Conference Series: Earth and Environmental Science, 497(1), 012018. https://doi.org/10.1088/1755-1315/497/1/012018
Zambolim, L., Caixeta, E., Guerreiro, O., Sera, G., Sera, T., Pereira, A., de Oliveira, A., Verdin, A., de Carvalho, C., & Ramalho, A. (2024). Breeding programs against coffee leaf rust in Brazil: A review. Journal of Agricultural Science, 16(5), 61–85. https://doi.org/10.5539/jas.v16n5p61
Zhai, M., Wang, Y., Capulong, C., Qu, H., Liu, Q., & Guo, D. (2024). A comparison of the physicochemical properties, digestibility, and expression patterns of starch-related genes of two supersweet corn hybrids (F1) and their parents. International Journal of Biological Macromolecules, 280(4), 135921. https://doi.org/10.1016/j.ijbiomac.2024.135921
Zhang, D., Vega, F., Solano, W., Su, F., Infante, F., & Meinhardt, W. (2021). Selecting a core set of nuclear SNP markers for molecular characterization of arabica coffee (Coffea arabica L.) genetic resources. Conservation Genetics Resources, 13(3), 329–335. https://doi.org/10.1007/s12686-021-01201-y
Zhang, F., Shi, Y., Ali, J., Xu, J., & Li, Z. (2021). Breeding by selective introgression: Theory, practices, and lessons learned from rice. The Crop Journal, 9(3), 646-657. https://doi.org/10.1016/j.cj.2021.03.006.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Scientia Agropecuaria

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).