Actinobacteria: Source of antifungal secondary metabolites for agricultural sustainability

Authors

  • Harold Alexander Vargas Hoyos Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia. https://orcid.org/0000-0002-0669-6032
  • Cristian David Grisales Vargas Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia. https://orcid.org/0000-0002-4037-2971
  • Daniel Osorio Giraldo Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia.
  • María Alejandra Villamizar Monsalve Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia. https://orcid.org/0000-0001-8428-321X
  • Juan Camilo Arboleda Rivera Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia. https://orcid.org/0000-0002-0030-056X
  • Ana María Mesa Vanegas Grupo AgroBiotecnología, Instituto de Biología, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia. https://orcid.org/0000-0001-6875-240X

DOI:

https://doi.org/10.17268/sci.agropecu.2025.023

Keywords:

actinobacteria, metabolite production, agriculture, sustainability

Abstract

There is a need for new alternative sources of exogenous antifungals to replace those currently used in agriculture. Actinobacteria are gram-positive bacteria with a wide variety of secondary metabolites, which produce around two-thirds of all naturally occurring antibiotics in current clinical use, as well as many anticancer, anthelmintic and antifungal compounds. Consequently, these bacteria are of great importance for agricultural biotechnology, since they can be produced and applied in fields that do not promote resistance among fungi that attack plants. This review presents the research carried out regarding the identification of metabolites with fungal properties, highlighting the main species involved in the production of metabolites that are being used or could be explored in agriculture as bioproducts to promote plant health and sustainability. This review expands knowledge for future research focused on the fields of genomics, proteomics, metabolomics, synthetic biology, and ecology for the investigation of novel antimicrobial compounds to combat antifungal resistance and develop more environmentally friendly bioproducts.

References

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001

Ahmad, G., Khan, A., Khan, A. A., Ali, A., & Mohhamad, H. I. (2021). Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie van Leeuwenhoek, 114(7), 885–912. https://doi.org/10.1007/s10482-021-01577-9

Andam, C. P., Doroghazi, J. R., Campbell, A. N., Kelly, P. J., Choudoir, M. J., & Buckley, D. H. (2016). A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces. MBio, 7(2). https://doi.org/10.1128/mBio.02200-15

Anilkumar, R. R., Edison, L. K., & Pradeep, N. S. (2017). Exploitation of Fungi and Actinobacteria for Sustainable Agriculture. In J. K. Patra, C. N. Vishnuprasad, & G. Das (Eds.), Microbial Biotechnology: Volume 1. Applications in Agriculture and Environment (pp. 135–162). Springer Singapore. https://doi.org/10.1007/978-981-10-6847-8_6

Anwar, S., Ali, B., & Sajid, I. (2016). Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Frontiers in Microbiology, 7, 1334. https://doi.org/10.3389/FMICB.2016.01334/BIBTEX

Araujo, R., Gupta, V. V. S. R., Reith, F., Bissett, A., Mele, P., & Franco, C. M. M. (2020). Biogeography and emerging significance of Actinobacteria in Australia and Northern Antarctica soils. Soil Biology and Biochemistry, 146, 107805. https://doi.org/10.1016/J.SOILBIO.2020.107805

Axenov-Gribanov, D. v, Kostka, D. v, Vasilieva, U. A., Shatilina, Z. M., Krasnova, M. E., Pereliaeva, E. v, Zolotovskaya, E. D., Morgunova, M. M., Rusanovskaya, O. O., & Timofeyev, M. A. (2020). Cultivable actinobacteria first found in baikal endemic algae is a new source of natural products with antibiotic activity. International Journal of Microbiology, ID 5359816. https://doi.org/10.1155/2020/5359816

Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 871, 1473. https://doi.org/10.3389/FPLS.2018.01473

Bhattacharjee, A., Sarma, S., Sen, T., Devi, M. V., Deka, B., & Singh, A. K. (2023). Genome mining to identify valuable secondary metabolites and their regulation in Actinobacteria from different niches. Archives of Microbiology, 205(4), 127. https://doi.org/10.1007/s00203-023-03482-3

Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H. -P., Clément, C., Ouhdouch, Y., & van Wezel, G. P. (2016). Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev., 80(1), 1–43. https://doi.org/10.1128/MMBR.00019-15

Barrios-González, J. (2018). Secondary metabolites production: Physiological advantages in solid-state fermentation. In Current developments in biotechnology and bioengineering, Chapter 13: 257-283. https://doi.org/10.1016/B978-0-444-63990-5.00013-X

Bal, H. B., Das, S., Dangar, T. K., & Adhya, T. K. (2013). ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. Journal of Basic Microbiology, 53(12), 972–984. https://doi.org/10.1002/jobm.201200445

Baltz, R. H. (2017). Gifted microbes for genome mining and natural product discovery. Journal of Industrial Microbiology and Biotechnology, 44(4–5). https://doi.org/10.1007/s10295-016-1815-x

Bao, Y., Dolfing, J., Guo, Z., Chen, R., Wu, M., Li, Z., Lin, X., & Feng, Y. (2021). Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome, 9(84), 2–17. https://doi.org/10.1186/s40168-021-01032-x

Beck, C., Garzón, J. F. G., & Weber, T. (2020). Recent Advances in Re-engineering Modular PKS and NRPS Assembly Lines. Biotechnology and Bioprocess Engineering, 25(6), 886–894. https://doi.org/10.1007/S12257-020-0265-5

Belknap, K. C., Park, C. J., Barth, B. M., & Andam, C. P. (2020). Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Scientific reports, 10(1), 2003. https://doi.org/10.1038/s41598-020-58904-9

Bérdy, J. (2005). Bioactive microbial metabolites. J Antibiot 58, 1–26. http://dx.doi.org/10.1038/ja.2005.1

Bérdy, J. (2012). Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65, 385–395. https://doi.org/10.1038/ja.2012.27

Bentz, M. L., Nunnally, N., Lockhart, S. R., Sexton, D. J., & Berkow, E. L. (2021). Antifungal activity of nikkomycin Z against Candida auris. J. Antimicrob. Chemother., 76, 1495–1497. https://doi.org/10.1093/JAC/DKAB052

Bibb, M. J. (2005) Regulation of secondary metabolism in Streptomycetes. Curr Opin Microbiol 8, 208-215. https://doi.org/10.1016/j.mib.2005.02.016

Binda, C., Lopetuso, L. R., Rizzatti, G., Gibiino, G., Cennamo, V., & Gasbarrini, A. (2018). Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease, 50(5), 421–428. https://doi.org/10.1016/j.dld.2018.02.012

Bister, B., Bischoff, D., Strobele, M., Riedlinger, J., Reicke, A., Wolter, F., Bull, A. T., Zahner, H., Fiedler, H. P., & Sussmuth, R. D. (2004). Abyssomicin C: apolycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed, 43, 2574–2576. http://doi.org/10.1002/anie.200353160

Blin, K., Medema, M. H., Kazempour, D., Fischbach, M. A., Breitling, R., Takano, E., & Weber, T. (2013). antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic acids research, 41(W1), W204-W212. https://doi.org/10.1093/nar/gkt449

Bogusz, D., & Franche, C. (2020). Frankia and the actinorhizal symbiosis. In Molecular Aspects of Plant Beneficial Microbes in Agriculture (pp. 367–380). INC. https://doi.org/10.1016/b978-0-12-818469-1.00030-4

Borah, A., & Thakur, D. (2020). Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Frontiers in Microbiology, 11, 318. https://doi.org/10.3389/FMICB.2020.00318/BIBTEX

Bormann, C., Huhn, W., Zahner, H., Rathmann, R., Hahn, H., & Konig, W. A. (1985). Metabolic products of microorganisms. 228. New nikkomycins produced by mutants of Streptomyces tendae. J Antibiot, 38, 9–16. https://doi.org/10.7164/antibiotics.38.9

Brothers, A. M., & Wyatt, R. D. (2000). The antifungal activity of natamycin toward molds isolated from commercially manufactured poultry feed. Avian Dis., 44, 490–497. https://doi.org/10.2307/1593087

Bulgarelli, D., Garrido-Oter, R., Münch, P. C., Weiman, A., Dröge, J., Pan, Y., McHardy, A. C., & Schulze-Lefert, P. (2015). Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host and Microbe, 17(3), 392–403. https://doi.org/10.1016/j.chom.2015.01.011

Budhathoki, S., & Shrestha, A. (2020). Screening of Actinomycetes from soil for antibacterial activity. Nep. J. Biotech., 8(3), 102–110. https://doi.org/10.3126/njb.v8i3.33664

Chakraborty, M., Mahmud, N. U., Muzahid, A. N. M., Fajle Rabby, S. M., & Islam, T. (2020). Oligomycins inhibit Magnaporthe oryzae Triticum and suppress wheat blast disease. PLoS One 15, e0233665. https://doi.org/10.1371/journal.pone.0233665

Chen, H., Renault, S., & Markham, J. (2020). The effect of Frankia and multiple ectomycorrhizal fungi species on Alnus growing in low fertility soil. Symbiosis, 80(2), 207–215. https://doi.org/10.1007/s13199-020-00666-z

Chevrette, M. G. et al. (2019). The antimicrobial potential of Streptomyces from insect microbiomes. Nat. Commun., 10, 516. https://doi.org/10.1038/s41467-019-08438-0

Choudoir, M., Rossabi, S., Gebert, M., Helmig, D., & Fierer, N. (2019). A Phylogenetic and Functional Perspective on Volatile Organic Compound Production by Actinobacteria. MSystems, 4(2). https://doi.org/10.1128/msystems.00295-18

Chukwuneme, C. F., Babalola, O. O., Kutu, F. R., & Ojuederie, O. B. (2020). Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. Journal of Plant Interactions, 15(1), 93–105. https://doi.org/10.1080/17429145.2020.1752833

Chu, L. L., Tran, C. T. B., Pham, D. T. K., Nguyen, H. T. A., Nguyen, M. H., Pham, N. M., & Nguyen, Q. H. (2024). Metabolic engineering of Corynebacterium glutamicum for the production of flavonoids and stilbenoids. Molecules, 29(10), 2252. https://doi.org/10.3390/molecules29102252

Crits-Christoph, A. J. (2021). Ecology and evolution of specialized metabolism in uncultivated bacteria. University of California, Berkeley.

Demain, A. & Sanchez, S. (2009), Microbial drug discovery: 80 years of progress. J Antibiot, 62, 5–16. https://doi.org/10.1038/ja.2008.16

Díaz, M., Fajardo, D.A., Moreno, J. D., García, C., & Nuñez, V. M. (2003). Identificación de Genes R1 y R2 que confieren resistencia a Phytophthora infestans en genotipos colombianos de papa. Revista Colombiana de Biotecnología, 5(2), 40-50.

Dimkpa, C. O., Merten, D., Svatoš, A., Büchel, G., & Kothe, E. (2009). Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. Journal of Applied Microbiology, 107(5), 1687-1696. https://doi.org/10.1111/j.1365-2672.2009.04355.x

Dorrestein, P. C., & Kelleher, N. L. (2006). Dissecting non-ribosomal and polyketide biosynthetic machineries using electrospray ionization Fourier-Transform mass spectrometry. Natural Product Reports, 23(6), 893–918. https://doi.org/10.1039/B511400B

Doull, J. L., Ayer, S. W., Singh, A. K., & Thibault, P. (1993). Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot, 46, 869–871. http://dx.doi.org/10.7164/antibiotics.46.869

Elsayed, E. A., Farid, M. A., & El-Enshasy, H. A. (2019). Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. BMC Biotechnol., 19, 1–13. https://doi.org/10.1186/s12896-019-0546-2

El-Tarabily, K. A., Nassar, A. H., Hardy, G., & Sivasithamparam, K. (2009). Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J of Applied Microbiology, 106(1), 13–26. https://doi.org/10.1111/j.1365-2672.2008.03926.x

El-Tarabily, K. A., Soliman, M. H., Nassar, A. H., Al-Hassani, H. A., Sivasithamparam, K., McKenna, F., & Hardy, G. E. S. J. (2000). Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathology, 49(5), 573–583. https://doi.org/10.1046/j.1365-3059.2000.00494.x

EPA. (2024). Información básica sobre pesticidas. Environmental Protection Agency U.S. https://espanol.epa.gov/espanol/informacion-basica-sobre-pesticidas

Fan, Y. T., Chung, K. R., & Huang, J. W. (2019). Fungichromin production by Streptomyces padanus PMS-702 for controlling cucumber downy mildew. Plant Pathol. J., 35, 341. https://doi.org/10.5423/PPJ.OA.03.2019.0057

Fatima, A., Abbas, M., Nawaz, S., Rehman, Y., ur Rehman, S., & Sajid, I. (2024). Whole genome sequencing (WGS) and genome mining of Streptomyces sp. AFD10 for antibiotics and bioactive secondary metabolites biosynthetic gene clusters (BGCs). Gene Reports, 37, 102050. https://doi.org/10.1016/j.genrep.2024.102050

FAO. (2024). Crops statistics database. [fecha de acceso: Diciembre de 2024]. http://faostat.fao.org

Fauth, U., Zahner, H., Muhlenfeld, A., & Achenbach, H. (1986). Galbonolides A and B: two non-glycosidic antifungal macrolides. J Antibiot, 39, 1760–1764. http://dx.doi.org/10.7164/antibiotics.39.1760

Fialho de Oliveira, M., Germano da Silva, M., & van der Sand, S. T. (2010). Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Research in Microbiology, 161(7), 565–572. https://doi.org/10.1016/j.resmic.2010.05.008

Gachango, E., Kirk, W., & Schafer, R. (2012). Effects of in-season crop-protection combined with postharvest applied fungicide on suppression of potato storage diseases caused by oomycete pathogens. Crop Protection, 41, 42-48. https://doi.org/10.1016/j.cropro.2013.04.009

Gil, J. A., & Campelo-Diez, A. B. (2003). Candicidin biosynthesis in Streptomyces griseus. Appl. Microbiol. Biotechnol., 60, 633–642. https://doi.org/10.1007/S00253-002-1163-9

Goo, Y. M. (1996). A new Streptothricin Family antibiotic producing Streptomyces spp. SNUS 8810-111 Characterization of the producing organisms, fermentation, isolation, and structure elucidation of antibiotics. Arch. Pharm. Res., 19(2). 153-159.

Guirao-Abad, J. P., Sánchez-Fresneda, R., Valentín, E., Martínez-Esparza, M., & Argüelles, J. C. (2013). Analysis of validamycin as a potential antifungal compound against Candida albicans. Int. Microbiol., 16, 217–225. https://doi.org/10.2436/20.1501.01.197

Hamdali, H., Bouizgarne, B., Hafidi, M., Lebrihi, A., Virolle, M. J., & Ouhdouch, Y. (2008). Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Applied Soil Ecology, 38(1), 12–19. https://doi.org/10.1016/j.apsoil.2007.08.007

Hamedi, J., & Mohammadipanah, F. (2015). Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. Journal of Industrial Microbiology & Biotechnology, 42(2), 157–171. https://doi.org/10.1007/s10295-014-1537-x

Hayashi, K., & Nozaki, H. (1999). Kitamycins, new antimycin antibiotics produced by Streptomyces sp. J Antibiot, 52, 325–328. http://dx.doi.org/10 .7164/antibiotics.52.325

Heine, D. (2018). Chemical warfare between leafcutter ant symbionts and a co- evolved pathogen. Nat. Commun., 9, 2208. https://doi.org/10.1038/s41467-018-04520-1

Hoang, H., Tran, L. H., Nguyen, T. H., Nguyen, D. A. T., Nguyen, H. H. T., Pham, N. B., Trinh, P. Q., de Boer, T., Brouwer, A., & Chu, H. H. (2020). Occurrence of endophytic bacteria in Vietnamese Robusta coffee roots and their effects on plant parasitic nematodes. Symbiosis, 80(1), 75–84. https://doi.org/10.1007/s13199-019-00649-9

Hofmann, M., Martin del Campo, J.S Sobrado, P., & Tischler, D. (2020). Biosynthesis of desferrioxamine siderophores initiated by decarboxylases: A functional investigation of two lysine/ ornithine-decarboxylases from Gordonia rubripertincta CWB2 and Pimelobacter simplex 3E. Archives of Biochemistry and Biophysics, 689, 108429. https://doi.org/10.1016/j.abb.2020.108429

Hohmann, C., Schneider, K., Bruntner, C., Irran, E., Nicholson, G., Bull, A. T., Jones, A. L., Brown, R., Stach, J. E., Goodfellow, M., Beil, W., Kramer, M., Imhoff, J. F., Sussmuth, R. D., & Fiedler, H. P. (2009). Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot, 62, 99–104. http://dx.doi.org/10.1038/ja.2008.24

Hopwood, D. A. (2007). Streptomyces in Nature and Medicine: The Antibiotic Markers. Oxford University Press, USA.

Hoshino, Y., Mukai, A., Yazawa, K., Uno, J., Ando, A., Mikami, Y., Fukai, T., Ishikawa, J., & Yamaguchi, K. (2004). Transvalencin A, a thiazolidine zinc complex antibiotic produced by a clinical isolate of Nocardia transvalensis. II. Structure elucidation. J Antibiot 57, 803–807. http://dx.doi.org/10.7164/antibiotics.57.803.

Hwang, B. K., Lim, S. W., Kim, B. S., Lee, J. Y., & Moon, S. S. (2001). Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl Environ Microbiol, 67, 3739–3745. http://dx.doi.org/10.1128/AEM.67.8.3739-3745.2001

Ibnouf, E. O., Aldawsari, M. F., & Waggiallah, H. A. (2022). Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi J of Biological Sciences, 29(8), 103352. https://doi.org/10.1016/j.sjbs.2022.103352

Isono, K., Nagatsu, J., Kawashima, Y., & Suzuki, S. (1965). Studies on polyoxins, antifungal antibiotics. Part I. Isolation and characterization of polyoxins A and B. Agric Biol Chem, 29, 848-854. http://dx.doi.org/10.1080/00021369.1965.10858475

Iwasa, T., Yamamoto, H., & Shibata, M. (1970). Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin- producing organism. J Antibiot, 23, 595–602.

Izumikawa, M., Cheng, Q., & Moore, B. S. (2006). Priming type II polyketide synthases via a type II nonribosomal peptide synthetase mechanism. Journal of the American Chemical Society, 128(5), 1428–1429. https://doi.org/10.1021/JA0559707

Jaramillo, S. (2003). Monografía sobre Phytophthora infestans (Mont) de bary. Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Medellin, Colombia.

Jiao, X., Takishita, Y., Zhou, G., & Smith, D. L. (2021). Plant Associated Rhizobacteria for Biocontrol and Plant Growth Enhancement. Frontiers in Plant Science, 12, 17. https://doi.org/10.3389/FPLS.2021.634796

Jog, R., Pandya, M., Nareshkumar, G., & Rajkumar, S. (2014). Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology (Reading, England), 160(Pt 4), 778–788. https://doi.org/10.1099/MIC.0.074146-0

Joseph, M. R. P., Al-Hakami, A. M., Assiry, M. M., Jamil, A. S., Assiry, A. M., Shaker, M. A., et al. (2015). In vitro anti-yeast activity of chloramphenicol: A preliminary report. J. Mycol. Med., 25, 17–22. https://doi.org/10.1016/J.MYCMED.2014.10.019

Karki, S., Kwon, S. Y., Yoo, H. G., Suh, J. W., Park, S. H., & Kwon, H. J. (2010). The methoxymalonyl-acyl carrier protein biosynthesis locus and the nearby gene with the β-ketoacyl synthase domain are involved in the biosynthesis of galbonolides in Streptomyces galbus, but these loci are separate from the modular polyketide synthase gene cluster. FEMS Microbiol. Lett., 310, 69–75. https://doi.org/10.1111/J.1574-6968.2010.02048.X

Kavitha, S. & Vimala, R. (2020). Screening of marine Actinomycetes for inhibitory activity against biofilm forming bacteria. J. Environ. Biol., 41, 995-1002. http://doi.org/10.22438/jeb/41/5/MRN-1215

Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in Plant Science, 20(4), 206–211. https://doi.org/10.1016/j.tplants.2015.01.004

Khamna, S., Yokota, A., Peberdy, J. F., & Lumyong, S. (2010). Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian Journal of BioSciences, 4, 23-32. https://doi.org/10.5053/ejobios.2010.4.0.4

Kang, H. S., Charlop-Powers, Z., & Brady, S. F. (2016). Multiplexed CRISPR/Cas9-and TAR-Mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synth. Biol., 5(9), 1002–1010. https://doi.org/10.1021/acssynbio.6b00080

Kaur, T., Vasudev, A., Sohal, S. K., & Manhas, R. K. (2014). Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiology, 14(1), 1–9. https://doi.org/10.1186/s12866-014-0227-1

Kallifidas, D., Jiang, G., Ding, Y., & Luesch, H. (2018). Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters. Microbial Cell Factories, 17, 25. https://doi.org/10.1186/s12934-018-0874-2

Kim, S. H., Lu, W. L., Ahmadi, M. K., Montiel, D., Ternei, M. A., & Brady, S. F. (2019). Atolypenes, tricyclic bacterial sesterterpenes discovered using a multiplexed in vitro Cas9-TAR gene cluster refactoring approach. ACS Synth. Biol., 8, 109–118. https://doi.org/10.1021/acssynbio.8b00361

Kim, H., Ji, C. H., Je, H. W., Kim, J. P., & Kang, H. S. (2020). mpCRISTAR: Multiple Plasmid Approach for CRISPR/Cas9 and TAR-Mediated Multiplexed Refactoring of Natural Product Biosynthetic Gene Clusters. ACS Synth. Biol., 9, 175–180. https://doi.org/10.1021/acssynbio.9b00382

Lacombe-Harvey, M.-È., Brzezinski, R., & Beaulieu, C. (2018). Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Applied Microbiology and Biotechnology, 102(17), 7219–7230. https://doi.org/10.1007/s00253-018-9149-4

Lasudee, K., Tokuyama, S., Lumyong, S., & Pathom-Aree, W. (2018). Actinobacteria Associated with arbuscular mycorrhizal funneliformis mosseae spores, taxonomic characterization and their beneficial traits to plants: Evidence obtained from mung bean (Vigna radiata) and Thai Jasmine Rice (Oryza sativa). Frontiers in Microbiology, 9, 1–18. https://doi.org/10.3389/fmicb.2018.01247

Latour, X., Barbey, C., Chane, A., Groboillot, A., & Burini, J. F. (2013). Rhodococcus erythropolis and its γ-lactone catabolic pathway: An unusual biocontrol system that disrupts pathogen quorum sensing communication. Agronomy, 3(4), 816–838. https://doi.org/10.3390/agronomy3040816

Lautru, S., Deeth, R. J., Bailey, L. M., & Challis, G. L. (2005). Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nature chemical biology, 1(5), 265-269. https://doi.org/10.1038/nchembio731

Lewin, G. R., Carlos, C., Chevrette, M. G., Horn, H. A., McDonald, B. R., Stankey, R. J., Fox, B. G., & Currie, C. R. (2016). Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annual Review of Microbiology, 70, 235–254. https://doi.org/10.1146/annurev-micro-102215-095748

Li, J., Cai, W., & Cai, J. (2009). The characteristics and mechanisms of pyridine biodegradation by Streptomyces sp. Journal of hazardous materials, 165(1-3), 950-954. https://doi.org/10.1016/j.jhazmat.2008.10.079

Li, L., Wu, J., Deng, Z., Mark Zabriskie, T., & He, X. (2013). Streptomyces lividans blasticidin S deaminase and its application in engineering a blasticidin S-Producing strain for ease of genetic manipulation. Appl. Environ. Microbiol., 79, 2349–2357. https://doi.org/10.1128/AEM.03254-12

Liao, G., Li, J., Li, L., Yang, H., Tian, Y., & Tan, H. (2009). Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes. Microb. Cell Fact., 8, 61. https://doi.org/10.1186/1475-2859-8-61

Linke, H. A., Mechlinski, W., & Schaffner, C. P. (1974). Production of amphotericin B-14C by Streptomyces nodosus fermentation, and preparation of the amphotericin B-14C-methyl ester. J Antibiot, 27, 155–160. http://dx.doi.org/10.7164/antibiotics.27.155.

Liu, C. M., McDaniel, L. E., & Schaffner, C. P. (1975). Factors affecting the production of candicidin. Antimicrob. Agents Chemother, 7, 196–202. https://doi.org/10.1128/AAC.7.2.196

Lu, H., Chanco, E., & Zhao, H. (2012). CmlI is an N-oxygenase in the biosynthesis of chloramphenicol. Tetrahedron, 68, https://doi.org/10.1016/j.tet.2012.06.036

Martínez-Hidalgo, P., García, J. M., & Pozo, M. J. (2015). Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Frontiers in Microbiology, 6, 1–11. https://doi.org/10.3389/fmicb.2015.00922

Masunaka, A., Hyakumachi, M., & Takenaka, S. (2011). Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes and Environments, 26(2), 128–134. https://doi.org/10.1264/JSME2.ME10176

Matarrita-Carranza, B., Moreira-Soto, R. D., Murillo-Cruz, C., Mora, M., Currie, C. R., & Pinto-Tomas, A. A. (2017). Evidence for widespread associations between neotropical hymenopteran insects and Actinobacteria. Frontiers in Microbiology, 8, 1–17. https://doi.org/10.3389/fmicb.2017.02016

Matsuoka, M., Yagishita, K., & Umezawa, H. (1953). Studies on the intermediate metabolism of chloramphenicol production. II. On the carbohydrate metabolism of Streptomyces venezuelae. Jpn J Med Sci Biol, 6, 161–169.

Mazid, S., Kalita, J., & Rajkhowa, R. (2011). A review on the use of biopesticides in insect pest management. International Journal of Science and Advanced Technology, 1(7), 169-178.

Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/S10311-010-0297-8

Nagpure, A., Choudhary, B., & Gupta, R. K. (2014). Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi. Journal of Basic Microbiology, 54(5), 397–407. https://doi.org/10.1002/JOBM.201200474

Oh, Y. (1992). Studies on the Optimization of Media Composition and Cultural Conditions for Kasugamycin Production, by Streptomyces kasugaensis. Microbiol. Biotechnol. Lett., 20, 583–587. https://doi.org/10.4014/MBL.1989.17.2.131

Palaniyandi, S. A., Yang, S. H., Zhang, L., & Suh, J. W. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 97(22), 9621–9636. https://doi.org/10.1007/s00253-013-5206-1

Pathom-aree, W., Rangseekaew, P., Kamjam, M., & Duangmal, K. (2021). Actinomycetes from Tropical Marine Environments of Thailand and their Biotechnological Applications. In Actinomycetes in Marine and Extreme Environments (pp. 27-52).

Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M., & Raaijmakers, J. M. (2018). The wild side of plant microbiomes. Microbiome, 6(1), 4–9. https://doi.org/10.1186/s40168-018-0519-z

Polpass A. J., Anjisha M., & Bhavanath J. (2021). Actinobacteria in natural products research: Progress and prospects, Microbiological Research, 246, 126708, https://doi.org/10.1016/j.micres.2021.126708

Raissa, G., Waturangi, D. E., & Wahjuningrum, D. (2020). Screening of antibiofilm and anti-quorum sensing activity of Actinomycetes isolates extracts against aquaculture pathogenic bacteria. BMC microbiology, 20, 343. https://doi.org/10.1186/s12866-020-02022-z

Rajaram, S. K., Ahmad, P., Keerthana, S. S. S., Cressida, P. J., Moorthy, I. G., & Suresh, R. S. (2020). Extraction and purification of an antimicrobial bioactive element from lichen associated Streptomyces olivaceus LEP7 against wound inhabiting microbial pathogens. Journal of King Saud University-Science, 32(3), 2009-2015. https://doi.org/10.1016/j.jksus.2020.01.039

Rani, K., Dahiya, A., Masih, J. C., & Wati, L. (2018). Actinobacterial biofertilizers: an alternative strategy for plant growth promotion. Int J Curr Microbiol App Sci, 7(9), 607-614. http://dx.doi.org/10.20546/ijcmas.2018.709.072

Reilly, H. C., Schatz, A., & Waksman, S. A. (1945). Antifungal Properties of Antibiotic Substances. J. Bacteriol., 49, 585–594. https://doi.org/10.1128/jb.49.6.585-594.1945

Ruiz, B., Chávez, A., Forero, A., et al. (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol, 36, 146–167. https://doi.org/10.3109/10408410903489576

Rutledge, P. J., & Challis, G. L. (2015). Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 13, 509. https://doi.org/10.1038/nrmicro3496

Sakano, K. I., Ishimaru, K., & Nakamura, S. (1980). New antibiotics, carbazomycins A and B. Fermentation, extraction, purification and physico-chemical and biological properties. J. Antibiot., 33, 683–689. https://doi.org/10.7164/antibiotics.33.683

Salwan, R., & Sharma, V. (2020). Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res., 231, 126374. https://doi.org/10.1016/j.micres.2019.126374

Santoro, M., Cappellari, L., Giordano, W., & Banchio, E. (2015). Production of Volatile Organic Compounds in PGPR. In F. D. Cassán, Y. Okon, & C. M. Creus (Eds.), Handbook for Azospirillum: Technical Issues and Protocols (pp. 307–317). Springer International Publishing. https://doi.org/10.1007/978-3-319-06542-7_17

Saricaoglu, S., Isik, K., Veyisoglu, A., Saygin, H., Cetin, D., Guven, K., & Sahin, N. (2014). Streptomyces burgazadensis sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 64, 4043-4048. https://doi.org/10.1099/ijs.0.065870-0

Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7(2). https://doi.org/10.1007/S13205-017-0736-3

Schmitzer, P. R., Graupner, P. R., Chapin, E. L., Fields, S. C., Gilbert, J. R., Gray, J. A., Peacock, C. L., & Gerwick, B. C. (2000). Ribofuranosyl triazolone: a natural product herbicide with activity on adenylosuccinate synthetase following phosphorylation. J Nat Prod, 63, 777–781. http://dx.doi.org/10.1021/np990590i

Schaaf, A. A. (2016). Valoración de impacto ambiental por uso de pesticidas en la región agrícola del centro de la provincia de Santa Fe, Argentina. Revista mexicana de ciencias agrícolas, 7(6), 1237-1247. https://doi.org/10.29312/remexca.v7i6.173

Schwartz, D., Grammel, N., Heinzelmann, E., Keller, U., & Wohlleben, W. (2005). Phosphinothricin tripeptide synthetases in Streptomyces viridochromogenes Tu494. Antimicrobial agents and chemotherapy, 49(11), 4598-4607. https://doi.org/10.1128/aac.49.11.4598-4607.2005

Sebak, M., Saafan, A. E., Abdelghani, S., Bakeer, W., Moawad, A. S., & El-Gendy, A. O. (2021). Isolation and optimized production of putative antimicrobial compounds from Egyptian soil isolate Streptomyces sp. MS. 10. Beni-Suef University Journal of Basic and Applied Sciences, 10, 8. https://doi.org/10.1186/s43088-021-00099-7

Skinnider, M. A., Merwin, N. J., Johnston, C. W., & Magarvey, N. A. (2017). PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic acids research, 45(W1), W49-W54. https://doi.org/10.1093/nar/gkx320

Sharma, M., Dangi, P., & Choudhary, M. (2014). Actinomycetes: source, identification, and their applications. Int. J. Curr. Microbiol. App. Sci, 3(2), 801–832.

Sharma, V., & Salwan, R. (2018). Biocontrol potential and applications of actinobacteria in agriculture. In New and Future Developments in Microbial Biotechnology and Bioengineering: Actinobacteria: Diversity and Biotechnological Applications (pp. 93–108). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63994-3.00006-0

Shih, H. D., Liu, Y. C., Hsu, F. L., Mulabagal, V., Dodda, R., & Huang, J. W. (2003). Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J Agric Food Chem, 51, 95–99. http://dx.doi.org/10.1021/jf025879b

Shivlata, L., & Satyanarayana, T. (2017). Actinobacteria in Agricultural and Environmental Sustainability. In Agro-Environmental Sustainability (Vol. 1, pp. 173–218). Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2

Shrivastava, P., & Kumar, R. (2018). Actinobacteria: Eco-Friendly Candidates for Control of Plant Diseases in a Sustainable Manner. In New and Future Developments in Microbial Biotechnology and Bioengineering: Actinobacteria: Diversity and Biotechnological Applications (pp. 79–91). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63994-3.00005-9

Singh, R., & Dubey, A. K. (2018). Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01767

Smith, P., & McCoy, E. (1954). Oligomycin, a new antifungal antibiotic. Antibiot Chemother (Northfield), 4, 962–970.

Soumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2021). Efficacy of phosphate solubilizing Actinobacteria to improve rock phosphate agronomic effectiveness and plant growth promotion. Rhizosphere, 17, 100284. https://doi.org/10.1016/j.rhisph.2020.100284

Sreevidya, M., Gopalakrishnan, S., Kudapa, H., & Varshney, R. K. (2016). Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian Journal of Microbiology, 47(1), 85–95. https://doi.org/10.1016/J.BJM.2015.11.030

Srivastava, V., Sarkar, A., Singh, S., Singh, P., de Araujo, A. S. F., & Singh, R. P. (2017). Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, 5, 64. https://doi.org/10.3389/FENVS.2017.00064/BIBTEX

Stenberg, J. A., Heil, M., Åhman, I., & Björkman, C. (2015). Optimizing crops for biocontrol of pests and disease. Trends in Plant Science, 20(11), 698–712. https://doi.org/10.1016/j.tplants.2015.08.007

Struyk, A. P., Hoette, I., Drost, G., Waisvisz, J. M., van Eek, T., & Hoogerheide, J. C. (1958). Pimaricin, a new antifungal antibiotic, p 878–885. In Welch H, Marti-Ibanez F (ed), Antibiotics annual 1957-1958. Medical Encylopedia, Inc., New York, NY.

Subramani, M., & Suthindhiran, K. (2024). Exploration of uncultivable actinobacteria from pristine mangrove sediments of Palk Strait, India – A metagenomic approach. Ecological Genetics and Genomics, 34, 100321. https://doi.org/10.1016/j.egg.2024.100321

Takeuchi, S., Hirayama, K., Ueda, K., Sakai, H., & Yonehara, H. (1958). Blasticidin S, a new antibiotic. J Antibiot, 11, 1–5.

Thampi, A., & Bhai, R. S. (2017). Rhizosphere actinobacteria for combating Phytophthora capsici and Sclerotium rolfsii, the major soil borne pathogens of black pepper (Piper nigrum L.). Biological Control, 109, 1–13. https://doi.org/10.1016/j.biocontrol.2017.03.006

Thilagam, R., & Hemalatha, N. (2019). Plant growth promotion and chilli anthracnose disease suppression ability of rhizosphere soil actinobacteria. Journal of Applied Microbiology, 126(6), 1835–1849. https://doi.org/10.1111/jam.14259

Trejo-Estrada, S., Paszczynski, A., & Crawford, D. (1998). Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusnuger YCED-9. J Ind Microbiol Biotechnol, 21, 81–90. http://dx.doi.org/10.1038/sj.jim.2900549.

Uri, N. (1998). Development and use of biopesticides: Implications of government policy and consumers’ preferences. Technological Forecasting and Social Change, 59, 291-304

Umezawa, H., Okami, Y., Hashimoto, T., Suhara, Y., Hamada, M., & Takeuchi, T. (1965). A new antibiotic, kasugsmycin. J Antibiot, 18, 101–103.

Undabarrena, A., Beltrametti, F., Claverías, F. P., González, M., Moore, E. R. B., Seeger, M., & Cámara, B. (2016). Exploring the diversity and antimicrobial potential of marine actinobacteria from the Comau Fjord in Northern Patagonia, Chile. Frontiers in Microbiology, 7. https://doi.org/10.3389/FMICB.2016.01135

Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology letters, 11(3), 296-310.

Van Bergeijk, D. A., Terlouw, B. R., Medema, M. H., & van Wezel, G. P. (2020). Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nature Reviews Microbiology, 18(10), 546–558. https://doi.org/10.1038/s41579-020-0379-y

Van Nguyen, T., & Pawlowski, K. (2017). Frankia and Actinorhizal Plants: Symbiotic Nitrogen Fixation. In S. Mehnaz (Ed.), Rhizotrophs: Plant Growth Promotion to Bioremediation (pp. 237–261). Springer Singapore. https://doi.org/10.1007/978-981-10-4862-3_12

Vargas Hoyos, H. A., Chiaramonte, J. B., Barbosa-Casteliani, A. G., Fernandez Morais, J., Perez-Jaramillo, J. E., et al. (2021). An actinobacterium strain from soil of cerrado promotes phosphorus solubilization and plant growth in soybean plants. Frontiers in Bioengineering and Biotechnology, 9, 1–13. https://doi.org/10.3389/fbioe.2021.579906

Velivelli, S. L. S., de Vos, P., Kromann, P., Declerck, S., & Prestwich, B. D. (2014). Biological control agents: from field to market, problems, and challenges. Trends in Biotechnology, 32(10), 493–496. https://doi.org/10.1016/J.TIBTECH.2014.07.002

Velten, S., Leventon, J., Jager, N., & Newig, J. (2015). What is sustainable agriculture? A systematic review. Sustainability (Switzerland), 7(6), 7833–7865. https://doi.org/10.3390/su7067833

Vergnes, S., Gayrard, D., Veyssière, M., Toulotte, J., Martinez, Y., Dumont, V., Bouchez, O., Rey, T., & Dumas, B. (2020). Phyllosphere colonization by a soil Streptomyces sp. promotes plant defense responses against fungal infection. Molecular Plant-Microbe Interactions, 33(2), 223–234. https://doi.org/10.1094/MPMI-05-19-0142-R

Vijayakumar, R., Murugesan, S., & Panneerselvam, A. (2010). Isolation, characterization and antimicrobial activity of actinobacteria from point calimere coastal region, east coast of India. Int Res J Pharam, 1, 358-365

Waksman, S. A. (1931). Decomposition of the various chemical constituents etc. of complex plant materials by pure cultures of fungi and bacteria. Archiv Für Mikrobiologie, 2(1), 136–154. https://doi.org/10.1007/BF00446500

Waksman, S. A., & Joffe, J. S. (1919). Studies in the metabolism of actinomycetes. The Journal of Bacteriology, 4(3), 189–216.

Waksman, S. A., & Woodruff, H. B. (1942). Selective antibiotic action of various substances of microbial origin. J Bacteriol 44, 373–384.

Wang, M., Carver, J. J., Phelan, V. V, Sanchez, L. M., Garg, N., Peng, Y., et al. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol., 34, 828–837. https://doi.org/10.1038/nbt.3597

Wang, L. Y., Xie, Y. S., Cui, Y. Y., Xu, J., He, W., Chen, H. G., & Guo, J. H. (2015). Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum. Microbiological Research, 177, 34–42. https://doi.org/10.1016/J.MICRES.2015.05.005

Wang, W., Qiu, Z., Tan, H., & Cao, L. (2014). Siderophore production by actinobacteria. BioMetals, 27(4), 623–631. https://doi.org/10.1007/s10534-014-9739-2

Wink, J., Mohammadipanah, F., & Hamedi, J. (2017). Biology and Biotechnology of Actinobacteria. Book Springer. https://doi.org/10.1007/978-3-319-60339-1

Yadav, A. N., Verma, P., Kumar, S., Kumar, V., Kumar, M., Kumari Sugitha, T. C., Singh, B. P., Saxena, A. K., & Dhaliwal, H. S. (2018). Actinobacteria from Rhizosphere: Molecular diversity, distributions, and potential biotechnological applications. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 13–41). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

Yamaguchi, I. (1995). Antibiotics as antifungal agents. In “Modern Selective Fungicides: Properties, Application” (H. Lyr ed.), pp. 415– 429. Fischer, Jena, Germany.

Yang, P. W, Li, M. G., Zhao, J. Y., Zhu, M. Z., Shang, H., Li, J. R., Cui, X. L., Huang, R., & Wen, M. L. (2010). Oligomycins A and C, major secondary metabolites isolated from the newly isolated strain Streptomyces diastaticus. Folia Microbiol (Praha), 55(1), 10-16. https://doi.org/10.1007/s12223-010-0002-0

Yonekawa, T., Ohnishi, Y., & Horinouchi, S. (2005). A calmodulin-like protein in the bacterial genus Streptomyces. FEMS microbiology letters, 244(2), 315-321.

Yuan, G., Hong, K., Lin, H., She, Z., & Li, J. (2013). New Azalomycin F Analogs from Mangrove Streptomyces sp. 211726 with Activity against Microbes and Cancer Cells. Mar. Drugs, 11, 817-829. https://doi.org/10.3390/MD11030817

Zeng, W., Kirk, W., & Hao, J. (2012). Field management of Sclerotinia stem rot of soybean using biological control agents. Biological Control, 60(2), 141–147. https://doi.org/10.1016/j.biocontrol.2011.09.012

Zhang, Y. L., Li, S., Jiang, D. H., Kong, L. C., Zhang, P. H., & Xu, J. D. (2013). Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02. J Agric Food Chem, 61, 1521–1524. http://dx.doi.org/10.1021/jf305210u

Zhang, M. M., Wang, Y., Ang, E. L., & Zhao, H. (2016). Engineering microbial hosts for production of bacterial natural products. Natural product reports, 33(8), 963-987. https://doi.org/10.1039/c6np00017g

Zhang, D., Lu, Y., Chen, H., Wu, C., Zhang, H., Chen, L., & Chen, X. (2020). Antifungal peptides produced by actinomycetes and their biological activities against plant diseases. Journal of Antibiotics, 73(5), 265–282. https://doi.org/10.1038/s41429-020-0287-4

Zhao, K., Li, J., Zhang, X., Chen, Q., Liu, M., Ao, X., Gu, Y., Liao, D., Xu, K., Ma, M., Yu, X., Xiang, Q., Chen, J., Zhang, X., & Penttinen, P. (2018). Actinobacteria associated with Glycyrrhiza inflata Bat. are diverse and have plant growth promoting and antimicrobial activity. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-32097-8

Zheng, Y., Saitou, A., Wang, C. M., Toyoda, A., Minakuchi, Y., Sekiguchi, Y., ... & Yabe, S. (2019). Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Frontiers in microbiology, 10, 893. https://doi.org/10.3389/fmicb.2019.00893

Zheng, J. -T., Rix, U., Zhao, L., Mattingly, C., Adams, V., Chen, Q., et al. (2005). Cytotoxic activities of new jadomycin derivatives NIH public access. J Antibiot, 58, 405–408. https://doi.org/10.1038/ja.2005.51

Zheng, X., Wang, J., Chen, Z., Zhang, H., Wang, Z., Zhu, Y., & Liu, B. (2019). A Streptomyces sp. strain: Isolation, identification, and potential as a biocontrol agent against soilborne diseases of tomato plants. Biological Control, 136, 104004. https://doi.org/10.1016/J.BIOCONTROL.2019.104004

Zhou, T. C., Kim, B. G., & Zhong, J. J. (2014). Enhanced production of validamycin A in Streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 98, 7911–7922. https://doi.org/10.1007/S00253-014-5943-9

Zhuang, X., Gao, C., Peng, C., Wang, Z., Zhao, J., Shen, Y., & Liu, C. (2020). Characterization of a novel endophytic actinomycete, Streptomyces physcomitrii sp. nov., and its biocontrol potential against Ralstonia solanacearum on tomato. Microorganisms, 8(12), 1–12. https://doi.org/10.3390/microorganisms8122025

Ziemert, N., Lechner, A., Wietz, M., Millán-Aguiñaga, N., Chavarria, K. L., & Jensen, P. R. (2014). Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proceedings of the National Academy of Sciences, 111(12), E1130-E1139. https://doi.org/10.1073/pnas.1324161111

Published

2025-04-15

How to Cite

Vargas Hoyos , H. A. ., Grisales Vargas, C. D. ., Osorio Giraldo, D., Villamizar Monsalve, M. A. ., Arboleda Rivera, J. C. ., & Mesa Vanegas, A. M. . (2025). Actinobacteria: Source of antifungal secondary metabolites for agricultural sustainability. Scientia Agropecuaria, 16(2), 307-326. https://doi.org/10.17268/sci.agropecu.2025.023

Issue

Section

Review Articles