Controlled-release nanofertilizer using chitosan nanoparticles loaded with NPK: Development and impact on the yield and nutritional quality of Solanum tuberosum
DOI:
https://doi.org/10.17268/sci.agropecu.2025.048Keywords:
Chitosan nanoparticles, Nanofertilizer, Solanum tuberosum, Agriculture, PotatoAbstract
In recent years, nanotechnology has made significant progress in various fields, including agriculture, where nanofertilizers play a pioneering role in improving crop productivity and reducing environmental pollution. In this study, a controlled-release nanofertilizer was developed using chitosan nanoparticles loaded with nitrogen (N), phosphorus (P), and potassium (K). The chitosan nanoparticles (CS-NPs) were prepared via an ionic gelation method using sodium tripolyphosphate and characterized by scanning transmission electron microscopy and infrared spectroscopy. The results revealed that the nanoparticle size ranged from 17.21 nm to 18.32 nm. The controlled release of N, P, and K was evaluated over 240 hours. The nanofertilizer was then applied foliage to Solanum tuberosum seedlings under greenhouse conditions. The findings indicated that the 0.25% chitosan nanofertilizer formulation resulted in nanoparticles with relatively high nutrient absorption capacity, with average values of 4.65 mg/L nitrogen, 198.55 mg/L phosphorus, and 1345.27 mg/L potassium. However, the most effective nanofertilizer treatment was the 1% chitosan nanoparticle formulation loaded with 5 ppm N, P, or K, resulting in the best nutritional characteristics among all the fertilization treatments and a 37% increase in the mass yield of Solanum tuberosum compared with that of the control. These results suggest that NPK-loaded chitosan nanoparticles could be used as foliar sprays to produce more nutritious and higher-yielding crops.
References
Abbasi, R., Shineh, G., Mobaraki, M., Doughty, S., & Tayebi, L. (2023). Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research, 25(3), 43. https://doi.org/10.1007/s11051-023-05690-w
Abdel-Hakim, S. G., Shehata, A. S. A., Moghannem, S. A., Qadri, M., El-Ghany, M. F. A., Abdeldaym, E. A., & Darwish, O. S. (2023). Nanoparticulate Fertilizers Increase Nutrient Absorption Efficiency and Agro-Physiological Properties of Lettuce Plant. Agronomy, 13(3), 691. https://doi.org/10.3390/agronomy13030691
Abuley, I. K., Nielsen, B. J., & Hansen, H. H. (2019). The influence of timing the application of nitrogen fertilizer on early blight ( Alternaria solani ). Pest Management Science, 75(4), 1150–1158. https://doi.org/10.1002/ps.5236
Ali, A. M., & Bijay-Singh. (2025). Environmental Pollution and Climate Change Implications of Agricultural Fertilizer Use. In Agricultural Nutrient Pollution and Climate Change (pp. 1–28). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-80912-5_1
Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. H. (2021). Impact of Foliar Application of Chitosan Dissolved in Different Organic Acids on Isozymes, Protein Patterns and Physio-Biochemical Characteristics of Tomato Grown under Salinity Stress. Plants, 10(2), 388. https://doi.org/10.3390/plants10020388
Baudot, C., Tan, C. M., & Kong, J. C. (2010). FTIR spectroscopy as a tool for nano-material characterization. Infrared Physics & Technology, 53(6), 434–438. https://doi.org/10.1016/j.infrared.2010.09.002
Bekah, D., Boyjoo, Y., Mistry Panpadoo, R., White, J. C., & Bhaw-Luximon, A. (2025). Nanostimulants and nanofertilizers for precision agriculture: transforming food production in the 21st century. Environmental Science: Nano, 12(3), 1740–1766. https://doi.org/10.1039/D5EN00055F
Benamer Oudih, S., Tahtat, D., Nacer Khodja, A., Mahlous, M., Hammache, Y., Guittoum, A., & Kebbouche Gana, S. (2023). Chitosan nanoparticles with controlled size and zeta potential. Polymer Engineering & Science, 63(3), 1011–1021. https://doi.org/10.1002/pen.26261
Berisha, D., Duhanaj, G., Neziraj, B., Osmanaj, A., & Bajraktari, N. (2022). INFLUENCE OF POTASSIUM FERTILIZER DOSES ON POTATO PLANT (Solanum tuberosum L.). International Journal of Ecosystems and Ecology Science (IJEES), 12(2), 433–440. https://doi.org/10.31407/ijees12.215
Bhattacharjee, S. (2016). DLS and zeta potential – What they are and what they are not? Journal of Controlled Release, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017
Bhattacharjee, S., Goswami, S., Das, S., Bhattacharjee, S., & Bhaladhare, S. (2023). pH-responsive, stable, and biocompatible functional nanogels based on chitosan (CS)/poly methacrylic acid (PMAA) polymers: Synthesis and characterization. Materials Today Communications, 36, 106541. https://doi.org/10.1016/j.mtcomm.2023.106541
Brodowska, M., Brodowska, M., & Kurzyna-Szklarek, M. (2019). Evaluation of phosphorous and potassium content in plant organs as a result of differentiated fertilizer ratios. Journal of Elementology, (4/2019). https://doi.org/10.5601/jelem.2019.24.2.1844
Cahyaningrum, S. E., Lusiana, R. A., Natsir, T. A., Muhaimin, F. I., Wardana, A. P., Purnamasari, A. P., & Misran, M. Bin. (2024). Synthesis and characterization of chitosan-modified membrane for urea slow-release fertilizers. Heliyon, 10(15), e34981. https://doi.org/10.1016/j.heliyon.2024.e34981
Carnero Canales, Christian S., Marquez Cazorla, J. I., Marquez Cazorla, R. M., Roque-Borda, C. A., Polinário, G., et al. (2024). Breaking barriers: The potential of nanosystems in antituberculosis therapy. Bioactive Materials, 39, 106–134. https://doi.org/10.1016/j.bioactmat.2024.05.013
Carnero Canales, Christian Shleider, Roque‐Borda, C. A., Cazorla, J. I. M., Cazorla, R. M. M., Apaza, U. J. P., et al. (2025). Forging a New Frontier: Antimicrobial Peptides and Nanotechnology Converging to Conquer Gastrointestinal Pathogens. Small. https://doi.org/10.1002/smll.202501431
Chaudhary, B., Dalamu, Gupta, V. K., Luthra, S. K., & Kumar, M. (2024). Morphological characterization of indigenous potato (Solanum tuberosum) genotypes. The Indian Journal of Agricultural Sciences, 94(5), 528–533. https://doi.org/10.56093/ijas.v94i5.134417
Chuc-Gamboa, M. G., Vargas-Coronado, R. F., Cervantes-Uc, J. M., Cauich-Rodríguez, J. V., Escobar-García, D. M., Pozos-Guillén, A., & San Román del Barrio, J. (2019). The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan. Polymers, 11(11), 1830. https://doi.org/10.3390/polym11111830
Collado-González, M., Montalbán, M. G., Peña-García, J., Pérez-Sánchez, H., Víllora, G., & Díaz Baños, F. G. (2017). Chitosan as stabilizing agent for negatively charged nanoparticles. Carbohydrate Polymers, 161, 63–70. https://doi.org/10.1016/j.carbpol.2016.12.043
Corradini, E., de Moura, M. R., & Mattoso, L. H. C. (2010). A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polymer Letters, 4(8), 509–515. https://doi.org/10.3144/expresspolymlett.2010.64
Devaux, A., Goffart, J.-P., Petsakos, A., Kromann, P., Gatto, M., et l. (2020). Global Food Security, Contributions from Sustainable Potato Agri-Food Systems. In The Potato Crop (pp. 3–35). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-28683-5_1
Diana, G., Candiani, A., Picco, A., Milanesi, A., Stampini, M., et al. (2024). Chitosan for improved encapsulation of thyme aqueous extract in alginate-based microparticles. International Journal of Biological Macromolecules, 270, 132493. https://doi.org/10.1016/j.ijbiomac.2024.132493
Dimkpa, C. O., Deng, C., Wang, Y., Adisa, I. O., Zhou, J., & White, J. C. (2023). Chitosan and Zinc Oxide Nanoparticle-Enhanced Tripolyphosphate Modulate Phosphorus Leaching in Soil. ACS Agricultural Science & Technology, 3(6), 487–498. https://doi.org/10.1021/acsagscitech.3c00054
Ding, Y., Zhao, W., Zhu, G., Wang, Q., Zhang, P., & Rui, Y. (2023). Recent Trends in Foliar Nanofertilizers: A Review. Nanomaterials, 13(21), 2906. https://doi.org/10.3390/nano13212906
Divya, K., Vijayan, S., Nair, S. J., & Jisha, M. S. (2019). Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. International Journal of Biological Macromolecules, 124, 1053–1059. https://doi.org/10.1016/j.ijbiomac.2018.11.185
Duarte Junior, A. P., Tavares, E. J. M., Alves, T. V. G., de Moura, M. R., da Costa, C. E. F., Silva Júnior, J. O. C., & Ribeiro Costa, R. M. (2017). Chitosan nanoparticles as a modified diclofenac drug release system. Journal of Nanoparticle Research, 19(8), 274. https://doi.org/10.1007/s11051-017-3968-6
Errebhi, M., Rosen, C. J., Gupta, S. C., & Birong, D. E. (1998). Potato Yield Response and Nitrate Leaching as Influenced by Nitrogen Management. Agronomy Journal, 90(1), 10–15. https://doi.org/10.2134/agronj1998.00021962009000010003x
Falcón-Rodríguez, A. B., Costales, D., Gónzalez-Peña, D., Morales, D., Mederos, Y., Jerez, E., & Cabrera, J. C. (2017). Chitosans of different molecular weight enhance potato (Solanum tuberosum L.) yield in a field trial. Spanish Journal of Agricultural Research, 15(1), e0902. https://doi.org/10.5424/sjar/2017151-9288
Fang, X., Xiang, Z., Ma, H., Wang, F., Wang, Q., Li, P., & Zheng, S. (2023). Effect of N Fertilizer Dosage and Base/Topdressing Ratio on Potato Growth Characteristics and Yield. Agronomy, 13(3), 909. https://doi.org/10.3390/agronomy13030909
Flores-Rojas, A. I., Díaz-Flores, P. E., Medellín-Castillo, N. A., Ovando-Medina, V. M., & Rodríguez-Ortiz, J. C. (2020). Biomaterials based on chitosan/orange peel as a controlled release matrix for KNO3: synthesis, characterization and their performance evaluation. Iranian Polymer Journal, 29(11), 1007–1017. https://doi.org/10.1007/s13726-020-00858-w
Freeman, K. L., Franz, P. R., & Jong, R. W. de. (1998). Effect of phosphorus on the yield, quality and petiolar phosphorus concentrations of potatoes (cvv. Russet Burbank and Kennebec) grown in the krasnozem and duplex soils of Victoria. Australian Journal of Experimental Agriculture, 38(1), 83. https://doi.org/10.1071/EA96045
Gan, Q., Wang, T., Cochrane, C., & McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces, 44(2–3), 65–73. https://doi.org/10.1016/j.colsurfb.2005.06.001
Goffart, J. P., Olivier, M., & Frankinet, M. (2008). Potato Crop Nitrogen Status Assessment to Improve N Fertilization Management and Efficiency: Past–Present–Future. Potato Research, 51(3–4), 355–383. https://doi.org/10.1007/s11540-008-9118-x
Goyal, A., Chavan, S. S., Mohite, R. A., Shaikh, I. A., Chendake, Y., & Mohite, D. D. (2025). Emerging trends and perspectives on nano-fertilizers for sustainable agriculture. Discover Nano, 20(1), 97. https://doi.org/10.1186/s11671-025-04286-8
Ha, N. M. C., Nguyen, T. H., Wang, S.-L., & Nguyen, A. D. (2019a). Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Research on Chemical Intermediates, 45(1), 51–63. https://doi.org/10.1007/s11164-018-3630-7
Haase, T., Schüler, C., & Heß, J. (2007). The effect of different N and K sources on tuber nutrient uptake, total and graded yield of potatoes (Solanum tuberosum L.) for processing. European Journal of Agronomy, 26(3), 187–197. https://doi.org/10.1016/j.eja.2006.09.008
Instituto Nacional de Estadística e Informática. (2024). Producción de papa aumentó 16,7% a nivel nacional y cinco departamentos aportaron el 60,9% del total en marzo de 2024. Instituto Nacional de Estadística e Informática. Retrieved from https://m.inei.gob.pe/prensa/noticias/cinco-departamentos-aportaron-el-609-del-total-de-la-produccion-de-papa-durante-marzo-de-2024-15178/
Jamnongkan, T., & Kaewpirom, S. (2010). Potassium Release Kinetics and Water Retention of Controlled-Release Fertilizers Based on Chitosan Hydrogels. Journal of Polymers and the Environment, 18(3), 413–421. https://doi.org/10.1007/s10924-010-0228-6
Jha, A., Pathania, D., Sonu, Damathia, B., Raizada, P., et al. (2023). Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. Environmental Research, 235, 116456. https://doi.org/10.1016/j.envres.2023.116456
Jha, S., Shukla, S. K., Pandey, A., Singh, R., Tiwari, A. K., et al. (2024). Role of nano-bio-composites in the sustainable agriculture: a review. Nano Express, 5(2), 022004. https://doi.org/10.1088/2632-959X/ad53e9
Keshvardoostchokami, M., Majidi, M., Zamani, A., & Liu, B. (2021). A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants. Carbohydrate Polymers, 273, 118625. https://doi.org/10.1016/j.carbpol.2021.118625
Klein, L. B., Chandra, S., & Mondy, N. I. (1980). The effect of phosphorus fertilization on the chemical quality of Katahdin potatoes. American Potato Journal, 57(6), 259–266. https://doi.org/10.1007/BF02855303
Mali, S., Dutta, M., & Zinta, G. (2023). Genome editing advancements in potato (Solanum tuberosum L.): operational challenges and solutions. Journal of Plant Biochemistry and Biotechnology, 32(4), 730–742. https://doi.org/10.1007/s13562-022-00812-2
Mamiya, K., Tanabe, K., & Onishi, N. (2020). Production of potato (<i>Solanum tuberosum</i>, L.) microtubers using plastic culture bags. Plant Biotechnology, 37(2), 233–238. https://doi.org/10.5511/plantbiotechnology.20.0312a
Marschner, E., A. Kirkby, & I. Cakmak. (1996). Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany, 47(Special), 1255–1263.
Ministerio de Desarrollo Agrario y Riego. (2023, May 29). El Perú es el primer productor de papa en América Latina y el sustento de más de 700 mil familias. Retrieved December 2, 2024, from Ministerio de Desarrollo Agrario y Riego website: https://www.gob.pe/institucion/midagri/noticias/769389-el-peru-es-el-primer-productor-de-papa-en-america-latina-y-el-sustento-de-mas-de-700-mil-familias
Mohammed, A., Alobaidi, Y., Abdullah, H., & Chemistry, C. (2022). Synthesis of nanochitosan membranes from shrimp shells. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2022.134670.5928
Mokhtar, A., Abdelkrim, S., Djelad, A., Sardi, A., Boukoussa, B., Sassi, M., & Bengueddach, A. (2020). Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydrate Polymers, 229, 115399. https://doi.org/10.1016/j.carbpol.2019.115399
Mora, L. Y. C., Tarazona, D. Y. G., Bohórquez Quintero, M. de los A., Barrera, E. J. A., Ruíz, J. S. U., Moreno, D. M. A., & Pérez, Z. Z. O. (2022). Impact of initial explants on in vitro propagation of native potato (Solanum tuberosum, Andigena group). Plant Cell, Tissue and Organ Culture (PCTOC), 150(3), 627–636. https://doi.org/10.1007/s11240-022-02317-1
Motakef Kazemi, N., & Salimi, A. A. (2019). Chitosan Nanoparticle for Loading and Release of Nitrogen, Potassium, and Phosphorus Nutrients. Iranian Journal of Science and Technology, Transactions A: Science, 43(6), 2781–2786. https://doi.org/10.1007/s40995-019-00755-9
Nandini, T., Sudhalakshmi, C., Sivakumar, K., Parameswari, E., & Thangamani, C. (2025). A review-chitosan nanoparticles towards enhancing nutrient use efficiency in crops. International Journal of Biological Macromolecules, 306, 141433. https://doi.org/10.1016/j.ijbiomac.2025.141433
Nithyaasri, S., Karthikeyan, R., Kalarani, M. K., Thirukumaran, K., Umapathi, M., & Sathyapriya, R. (2025). Nanotechnology: The Gamechanger in Agricultural Production in a Dynamic Environment. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-025-02616-4
Niu, J., Liu, C., Huang, M., Liu, K., & Yan, D. (2021). Effects of Foliar Fertilization: a Review of Current Status and Future Perspectives. Journal of Soil Science and Plant Nutrition, 21(1), 104–118. https://doi.org/10.1007/s42729-020-00346-3
Padinjarathil, H., Mudradi, S., Balasubramanian, R., Drago, C., Dattilo, S., Kothurkar, N. K., & Ramani, P. (2023). Design of an Antibiotic-Releasing Polymer: Physicochemical Characterization and Drug Release Patterns. Membranes, 13(1), 102. https://doi.org/10.3390/membranes13010102
Pandey, P., Singh, S., Khan, M. S., & Semwal, M. (2022). Non-invasive Estimation of Foliar Nitrogen Concentration Using Spectral Characteristics of Menthol Mint (Mentha arvensis L.). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.680282
Parenteau, M. T., Gu, H., Zebarth, B. J., Cambouris, A. N., Lafond, J., et al. (2020). Data Mining Nitrogen-Responsive Gene Expression for Source–Sink Relations and Indicators of N Status in Potato. Agronomy, 10(10), 1617. https://doi.org/10.3390/agronomy10101617
Perez Bravo, J. J., & François, N. J. (2020). Chitosan/Starch Matrices Prepared by Ionotropic Gelation: Rheological Characterization, Swelling Behavior and Potassium Nitrate Release Kinetics. Journal of Polymers and the Environment, 28(10), 2681–2690. https://doi.org/10.1007/s10924-020-01798-5
Perez, E., Rafael Rutte, R. R., & Osorio, G. (2024). Estrés hídrico en el crecimiento y rendimiento de cultivares comerciales de papa (<i>Solanum tuberosum</i> L.) en la región centro del Perú. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 26(1), 46–55. https://doi.org/10.18271/ria.2024.587
Petropoulos, S. A., Fernandes, Â., Polyzos, N., Antoniadis, V., Barros, L., & C.F.R. Ferreira, I. (2020). The Impact of Fertilization Regime on the Crop Performance and Chemical Composition of Potato (Solanum tuberosum L.) Cultivated in Central Greece. Agronomy, 10(4), 474. https://doi.org/10.3390/agronomy10040474
Popovic, O., Jensen, S. M., & Thorup-Kristensen, K. (2025). Deep Rooting as an Indicator of Deep Soil Water and N Uptake in Potato (Solanum tuberosum L.). Potato Research, 68(2), 1727–1751. https://doi.org/10.1007/s11540-024-09802-4
Pourjavadi, A., Soleyman, R., & Rezanejad Bardajee. (2010). Novel High Capacity Swelling Superabsorbent Composite and Its Potential for Controlled Release of Fertilizers. Iranian Journal of Chemistry and Chemical Engineering, 29(4), 113–123.
Prajapati, D., Pal, A., Dimkpa, C., Harish, Singh, U., et al. (2022a). Chitosan nanomaterials: A prelim of next-generation fertilizers; existing and future prospects. Carbohydrate Polymers, 288, 119356. https://doi.org/10.1016/j.carbpol.2022.119356
Qin, Q., Wang, Q., Chen, Y., Tang, Y., Ding, Y., & Rui, Y. (2025). Enhancing crop yields and quality of agricultural products: research progress in nanofertilizer applications. Environmental Science: Nano, 12(4), 2193–2207. https://doi.org/10.1039/D5EN00075K
Ramchandani, M., Rath, G., & Goyal, A. K. (2023). Advances in hydrogel-based controlled drug-delivery systems. In Smart Polymeric Nano-Constructs in Drug Delivery (pp. 329–350). Elsevier. https://doi.org/10.1016/B978-0-323-91248-8.00011-8
Rukchonlatee, S., & Siriphannon, P. (2023). Facile Preparation of Montmorillonite/Crosslinked Chitosan Containing Potassium Nitrate Nanocomposites as Eco-Friendly Slow Release Fertilizers. Journal of Polymers and the Environment, 31(8), 3454–3465. https://doi.org/10.1007/s10924-023-02815-z
Sabina, R., Paul, J., Sharma, S., & Hussain, N. (2025). Synthetic Nitrogen Fertilizer Pollution: Global Concerns and Sustainable Mitigating Approaches. In Agricultural Nutrient Pollution and Climate Change (pp. 57–101). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-80912-5_3
Safdar, R., Gnanasundaram, N., Iyyasami, R., Appusamy, A., Papadimitriou, S., & Thanabalan, M. (2019). Preparation, characterization and stability evaluation of ionic liquid blended chitosan tripolyphosphate microparticles. Journal of Drug Delivery Science and Technology, 50, 217–225. https://doi.org/10.1016/j.jddst.2019.01.027
Salisu, M. A., Oyebamiji, Y. O., Ahmed, O. K., Shamsudin, N. A., Fairuz, Y. S., et al. (2024). A systematic review of emerging trends in crop cultivation using soilless techniques for sustainable agriculture and food security in post-pandemic. AIMS Agriculture and Food, 9(2), 666–692. https://doi.org/10.3934/agrfood.2024036
Sarkar, D., Pandey, S. K., & Sharma, S. (2010). High K+ does not affect potato (Solanum tuberosum L.) tuber induction, but represses its development in vitro. In Vitro Cellular & Developmental Biology - Plant, 46(6), 569–577. https://doi.org/10.1007/s11627-010-9307-6
Sharma, H., & Sharma, N. (2025). A Review on the Efficient Release of Nutrients for Sustainable Agriculture. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-025-02580-z
Shahbandeh. (2024, February 6). Global potato production 2002-2022. Retrieved December 2, 2024, from Statista website: https://www.statista.com/statistics/382174/global-potato-production/
Shu, X., Jin, M., Wang, S., Xu, X., Deng, Let al. (2024). The Effect of Nitrogen and Potassium Interaction on the Leaf Physiological Characteristics, Yield, and Quality of Sweet Potato. Agronomy, 14(10), 2319. https://doi.org/10.3390/agronomy14102319
Silvestro, I., Francolini, I., Di Lisio, V., Martinelli, A., Pietrelli, L., et al. (2020). Preparation and Characterization of TPP-Chitosan Crosslinked Scaffolds for Tissue Engineering. Materials, 13(16), 3577. https://doi.org/10.3390/ma13163577
Steglińska, A., Nowak, A., Janas, R., Grzesik, M., Śmigielski, K., Kręgiel, D., & Gutarowska, B. (2024). Chitosan as an Antimicrobial, Anti-Insect, and Growth-Promoting Agent for Potato (Solanum tuberosum L.) Plants. Molecules, 29(14), 3313. https://doi.org/10.3390/molecules29143313
Timofeeva, A., Galyamova, M., & Sedykh, S. (2022). Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants, 11(16), 2119. https://doi.org/10.3390/plants11162119
Trentman, M. T., Tank, J. L., Shepherd, H. A. M., Marrs, A. J., Welsh, J. R., & Goodson, H. V. (2021). Characterizing bioavailable phosphorus concentrations in an agricultural stream during hydrologic and streambed disturbances. Biogeochemistry, 154(3), 509–524. https://doi.org/10.1007/s10533-021-00803-w
Wang, Q., Gao, L., Li, Y., Shakoor, N., Sun, Y., et al. (2023). Nano-agriculture and nitrogen cycling: Opportunities and challenges for sustainable farming. Journal of Cleaner Production, 421, 138489. https://doi.org/10.1016/j.jclepro.2023.138489
Wujcicki, Ł., & Kluczka, J. (2023). Recovery of Phosphate(V) Ions from Water and Wastewater Using Chitosan-Based Sorbents Modified—A Literature Review. International Journal of Molecular Sciences, 24(15), 12060. https://doi.org/10.3390/ijms241512060
Xu, T., Wang, Y., Aytac, Z., Zuverza-Mena, N., Zhao, Z., et al. (2022). Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core–Shell Nanostructures. ACS Nano, 16(4), 6034–6048. https://doi.org/10.1021/acsnano.1c11490
Yarullina, L., Cherepanova, E. A., Burkhanova, G. F., Sorokan, A. V., Zaikina, E. A., et al. (2023). Stimulation of the Defense Mechanisms of Potatoes to a Late Blight Causative Agent When Treated with Bacillus subtilis Bacteria and Chitosan Composites with Hydroxycinnamic Acids. Microorganisms, 11(8), 1993. https://doi.org/10.3390/microorganisms11081993

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Scientia Agropecuaria

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).