Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2025.006

Keywords:

agro-model, cultivares, canopy, remote sensing, artificial intelligence

Abstract

Sugarcane occupies a large territorial scale in the world and is constantly searching for mechanisms to monitor nutrients in the crop production cycle, using non-destructive methods. The study aimed to estimate the nitrogen content in the sugarcane leaf was developed in the 2021/2022 harvest on two commercial fields of dryland cultivars (RB867515 = 50.75 ha) and (CVSP7870 = 48.56 ha) at the Serranópolis-Goiás mill, evaluating the efficiency of the biochemical vegetation indices Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and Canopy Chlorophyll Content (CCC) processed using the radiation transfer model RTM PROSAIL, compared to the Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI), processed using mathematical band ratio models. Both were based on a time series of Sentinel-2 data as input variables. The validation of the Agro-Model occurred through analysis of leaf tissue collected in seven interspersed evaluations during the period the crop remained in the field. The functionality of the four indexes was evidenced, highlighting the biochemical index fAPAR from the perspective of descriptive statistics (R² = 0.970 and RMSE = 0.46) for the cultivar RB867515 and (R² = 0.940 and RMSE = 0.69) for the cultivar CVSP7870.

References

Ali, A.M., Darvishzadeh, R, Skidmore., A, Gara, T. W., O'Connor, B., Roeoesli, C., Heurich, M., & Paganini, M. (2020). Comparing methods for mapping canopy chlorophyll content in a mixed mountain forest using sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf., 87. https://doi.org/10.1016/j.jag.2019.102037

Andrade, J. B., Ferrari Junior, E., & Possenti, R. A. (2003). Seleção de 39 variedades de cana-de-açúcar para alimentação animal. Brazilian of Journal Veterinary Research Animal Science, 40(4), 287-296. https://doi.org/10.1590/S1413-95962003000400008

Barros, P. P. S., Fiorio, P. R., Demattê, J. A. M., Martins, J. A., Montezano, Z. F., & Dias, F. L. F. (2022). Estimation of leaf nitrogen levels in sugarcane using hyperspectral models. Ciência Rural, Santa Maria, 52(7), e20200630. https://doi.org/10.1590/0103-8478cr20200630

Bassi, M., Menossi, M., & Mattiello, L. (2018). Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci. Rep., 8(1) 2327, https://doi.org/10.1038/s41598-018-20653-1

Berger, K., Verrelst, J., Feret, J.-B., Wang, Z., Wocher, M., Strathmann, M., Danner, M., Mauser, W., & Hank, T. (2020). Crop nitrogen monitoring: Recent progress and principal developments in the contexto of imaging spectroscopy missions. Remote Sensing of Environment, 242, 111758. https://doi.org/10.1016/j.rse.2020.111758

Calheiros, A. S., Oliveira, M. W., Ferreira, V., Barbosa, G. V. S., Costa, J. P. V., Lima, G. S., & Aristides, E. V. S. (2011). Acúmulo de nutrientes e produção de sacarose de duas variedades de cana-de-açúcar na primeira rebrota, em função de doses de fósforo. STAB. Tecnologia/Pesquisa, p. 26-29.

Clevers, J. G. P. W., & Kooistra, L. (2012). Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J. Sel. Top. Appl. Earth Observ. 5, 574-583.

Coelho, A.P, Rosalen D. L., & Faria, R. T. (2018). Vegetation indices in the prediction of biomass and grain yield of white oat under irrigation levels. Pesquisa Agropecuária Tropical, 48(2), 109-117. https://doi.org/10.1590/1983-40632018v4851523.

Cremonesi, M. V., Ramalho, B., Golfetto, P., Krepki, L. S., & Pauletti, V. (2019). Marcha de absorção, taxa de acúmulo e exportação de micronutrientes e alumínio pelo tabaco (Nicotiana tabacum L.). Revista de Ciências Agroveterinárias, 18(1), 13-23. https://doi.org/10.5965/223811711812019013.

Darvishzadeh, R., Matkan, A. A., & Dashti Ahangar, A. (2012). Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens, 5, 1222–1230.

Delloye, C., Weiss, M., & Defourny, P. (2018). Retrieval of the canopy chlorophyll content from sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sensing of Environment, 216, 245–261. https://doi.org/10.1016/j.rse.2018.06.037

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ., 58, 289–298. https://doi.org/10.1016/S0034-4257(96)00072-7

Gitelson, A. A., & Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res., 22, 689–692.

Houborg, R., Soegaard, H., & Boegh, E. (2007) Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens Environ, 106, 39–58. https://doi.org/10.1016/j.rse. 2006.07.016

Houlès, V., Mary, B., Machet, J. M., Guérif, M., & Moulin, S. (2001). Do crop characteristics available from remote sensing allow to determine crop nitrogen status? In G. Grenier, & S. Blackmore (Eds.), 3rd European Conferance on Precision Agriculture (pp. 917-922). Montpellier: Agro Montpellier,

Instituto Nacional de Meteorologia - INMET: Banco de dados meteorológicos. https://tempo.inmet.gov.br/

JASP Team (2024). Version 0.18.3) [Computer software]. https://jasp-stats.org/

Liu, W. T. H. (2006). Aplicações de sensoriamento remoto. Campo Grande: Ed. UNIDERP, 908 p.

Martins, J. A., Fiorio, P. R., Silva Barros, P. P., Demattê, J. A. M., Molin, J. P., Cantarella, H., & Neale, C. M. U. (2021). Potential use of hyperspectral data to monitor sugarcane nitrogen status. Acta Scientiarum. Agronomy, 43, e47632. https://doi.org/10.4025/actasciagron.v43i1.47632

Monteith, J. L. (1977). Climate and Efficiency of Crop Production in Britain. Philosophical Transactions of the Royal Society London B, 281, 277-294.

Prado, R. M. (2021). Introduction to Plant Nutrition. In: Mineral nutrition of tropical plants (pp.1-38) Springer, Cham.. https://doi.org/10.1007/978-3-030-71262-4_1

Quaggio, J. A., Cantarella, H., van Raij B, Otto, R., Penatti, C. P., Rossetto, R., et al. (2022). Cana-de-açúcar. In: Boletim 100: recomendações de adubação e calagem para o Estado de São Paulo. Campinas: IAC.

Reyes-Trujillo, A., Daza-Torres, M. C., Galindez-Jamioy, C. A., Rosero-García, E. E., Muñoz-Arboleda, F., & Solarte-Rodriguez, E. (2021). Estimating canopy nitrogen concen-tration of sugarcane crop using in situ spectroscopy, Heliyon, 7(3) e06566, https://doi.org/10.1016/j.heliyon.2021.e06566

Ribeiro, R. V., Machado, R. S., Machado, E. C., Machado, D. F. S. P., Magalhães Filho, J. R., & Landell, M. G. A. (2013). Revealing drought-resistance and productive patterns in sugarcane genotypes by evaluating both physiological responses and stalk yield. Experimental Agriculture, Cambridge, 49, 212-224. https://doi.org/10.1017/S0014479712001263

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. https://ntrs.nasa.gov/citations/19750020419

Stamford, J. D., Vialet-Chabrand, S., Cameron, I., & Lawson, T., (2023). Development of an accurate low cost NDVI imaging system for assessing plant health. Plant Methods, 30, 19. https://doi.org/10.1186/s13007-023-00981-8

Verrelst, J., Malenovsky, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J. P., Lewis, P., North, P., & Moreno, J. (2019). Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surveys in Geophysics, 40(3), 589–629. https://doi.org/10.1007/s10712-018-9478-y

Vitti, G. C., Luz, P. H. C., & Altran, W. S. (2016). Nutrição e Adubação. p. 66-93. In: Santos, F.; Borém A. Cana-de-Açúcar do Plantio à Colheita. Viçosa: UFV.

Weiss, M., Baret, F., & Sylvain, J. (2020). Sentinel2 ToolBox Level2 Products. V2.0. https://step.esa.int/docs/extra/ATBD_S2ToolBox_V2.0.pdf

Zhao, B., Duan, A., Ata-Ul-Karim, S. T., Liu, Z., Gong, Z., Zhang, J., Xiao, J., liu, Z., Qin, A., & Ning, D. (2018). Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. European Journal of Agronomy, 93, 113-125. https://doi.org/10.1016/j.eja.2017.12.006

Published

2025-01-14

How to Cite

Filho, J. N. S., Pereira, D. E. P., & Noronha, A. S. R. (2025). Estimation of nitrogen content in sugarcane based on vegetation indices derived from Sentinel-2 data. Scientia Agropecuaria, 16(1), 61-70. https://doi.org/10.17268/sci.agropecu.2025.006

Issue

Section

Original Articles