Methods for determination of antioxidant capacity of traditional and emergent crops of interest in Mexico: An overview
DOI:
https://doi.org/10.17268/sci.agropecu.2024.044Keywords:
reactive oxygen species, natural antioxidants, extraction methods, quantification methods, Mexican crops, antioxidant capacityAbstract
Reactive oxygen species are produced by aerobic organisms, including humans, because of metabolism. They can oxidise biomolecules and cause degenerative and cardiovascular diseases (diabetes, atherosclerosis, and neurological damage, among others). However, the consumption of different plant products is related to the prevention of reactive oxygen species–mediated damage because they contain various antioxidants that inhibit the oxidation of biomolecules. Some important natural antioxidants are carotenoids, flavonoids, polyphenols, and vitamins. These molecules are found in various crops produced in Mexico, some of which have been cultivated for a long time, while others have emerged in recent years. The study of the antioxidant capacity of these crops has increased over time. Different methods are used to determine this capacity, depending on the type of antioxidants. In this review, we analyse the antioxidant quantification methods of various crops of interest in Mexico (traditional and emergent), as well as their relationship to prevent the oxidation of biomolecules.
References
Aguirre, J., & Lambeth, J. D. (2010). Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radical Biology and Medicine, 49, 1342–1353. https://doi.org/10.1016/j.freeradbiomed.2010.07.027
Aguirre, J., Rios-Momberg, M., Hewitt, D., & Hansberg, W. (2005). Reactive oxygen species and development in microbial eukaryotes. Trends Microbiology, 13, 111–118. https://doi.org/10.1016/j.tim.2005.01.007
Ali, A., Cottrel, J. J., & Dunshea, F. r. (2023). Antioxidant, alpha-glucosidase inhibition activities, in silico molecular docking and pharmacokinetics study of phenolic compounds from native Australian fruits and spices. Antioxidants, 12, 254. https://doi.org/10.3390/antiox12020254
Ameer, K. (2016). Avocado as a major dietary source of antioxidants and its preventive role in neurodegenerative diseases. In M. M. Essa, M. Akbar, & G. Guillemin (Eds.), The benefits of natural products for neurodegenerative diseases (pp. 337–354). Springer. https://doi.org/10.1007/978-3-319-28383-8_18
Angonese, M., Motta, G. E., Silva-de Farias, N., Molognoni, L., Daguer, H., Brugnerotto, P., Costa, A. C. O., & Müller, C. M. O. (2021). Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: Comparison of phenolic and organic acids profiles and antioxidant activities. LWT, 149, 111924. https://doi.org/10.1016/j.lwt.2021.111924
Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: Cuprac method. Journal of Agricultural and Food Chemistry, 52, 7970–7981. https://doi.org/10.1021/jf048741x
Arcila-Lozano, C. C., Loarca-Piña, G., Lecona-Uribe, S., & González-de Mejía, E. (2004). El orégano: propiedades, composición y actividad biológica de sus componentes. Archivos Latinoamericanos de Nutrición, 54, 100–111.
Attar, S. H., Gündesli, M. A., Urün, I., Kafkas, S., Kafkas, N. E., Ercisli, S., Ge, C., Mlcek, J., & Adamkova, A. (2022). Nutritional analysis of red-purple and white-fleshed pitaya (Hylocereus) species. Molecules, 27, 808. https://doi.org/10.3390/molecules27030808
Avendaño-Arrazate, C. H., Campos-Rojas, E., López-Palestina, C. U., Martínez-Bolaños, M., Caballero-López, J. F., Báez-Alonso, M., Ariza-Flores, R., & Cadena-Iñigyez, J. (2021). Actividad antioxidante en genotipos de Theobroma spp. (Malvaceae) en México. Revista de Biología Tropical, 69, 507–523. https://doi.org/10.15517/rbt.v69i2.41626
Baenas, N., Iniesta, C., González-Barrio, R., Nuñez-Gómez, V., Periago, M. J., & García-Alonso, J. (2021). Post-harvest use of ultraviolet light (UV) and light emitting diode (LED) to enhance bioactive compounds in refrigerated tomatoes. Molecules, 26, 1847. https://doi.org/10.3390/molecules26071847
Balasundram, N., Sundram, K., & Samman S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042
Barkociová, M., Tóth, J., Sutor, K., Drobnicka, N., Wybraniec, S., Dudík, B., Bilková, A., & Czigle, S. (2021). Betalains in edible fruits of three cactaceae taxa—Epiphyllum, Hylocereus, and Opuntia—their LC-MS/MS and FTIR identification and biological activities evaluation. Plants, 10, 2669. https://doi.org/10.3390/plants10122669
Barros, A. I. R. N. A., Nunes, F. M., Gonçalves, B., Bennett, R. N., & Silva, A. P. (2011) Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chemistry, 128, 165–172. https://doi.org/10.1016/j.foodchem.2011.03.013
Batziakas, K. G., Jenkins, T., Stanley, H., Cunningham, B. M., Kang, Q., Rivard, C. L., & Pliakon, E. D. (2022). Effect of high-tunnel production systems on the preharvest losses and harvest quality of ‘BHN 589’ and ‘Cherokee Purple’ tomatoes. Hortitechnology, 32, 507–509. https://doi.org/10.21273/HORTTECH05082-22
Bayram, Y., & Elgin-Karabacak, C. (2022). Characterization of unripe grapes (Vitis vinifera L.) and its use to obtain antioxidant phenolic compounds by green extraction. Frontiers in Sustainable Food Systems, 6, 909894. https://doi.org/10.3389/fsufs.2022.909894
Benzie, I., & Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘“antioxidant power”’: the FRAP assay. Analytical Biochemistry, 239, 70–76. https://doi.org/10.1006/abio.1996.0292
Borahan, T., Girgin, A., Atsever, N., Zaman, B. T., Chormey, D. S., & Bakirdere, S. (2022). Development of a double-monitoring method for the determination of total antioxidant capacity as ascorbic acid equivalent using CUPRAC assay with RP-HPLC and digital image-based colorimetric detection. European Food Research and Technology, 248, 707–713. https://doi.org/10.1007/s00217-021-03923-7
Bucky, A., Pičmanová, M., Porley, V., Pont, S., Austin, C., Khan, T., McDougall, G., Johnstone, A., & Stewart, D. (2024). Light manipulation as a route to enhancement of antioxidant properties in red amaranth and red lettuce. Frontiers in Nutrition, 11, 1386988. https://doi.org/10.3389/fnut.2024.1386988
Bursal, E., Köksal, E., Gülçin, I., Bilsel, G., & Gören, A. C. (2013). Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Research International, 51, 66–74. https://doi.org/10.1016/j.foodres.2012.11.022
Caicedo-Narváez, S., & Hernández-Carrión, M. (2022). Evaluation of antioxidant activity, phenolic content, anthocyanins, and flavonoids of fresh and dried ‘Biloxi’ blueberries. Journal Vitae, 29, 348980. https://doi.org/10.17533/udea.vitae.v29n3a348980
Cakmak, K. C., & Gulcin, I. (2019). Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicology Reports, 6, 1273–1280. https://doi.org/10.1016/j.toxrep.2019.11.003
Cakmakci, S., Topdaş, E. F., Kalın, P., Han, H., Şekerci, P., Polat Kose, L., & Gulcin, I. (2015) Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. International Journal of Food Science & Technology, 50, 472–481. https://doi.org/10.1111/ijfs.12637
Calva-Estrada, S. J., Lugo-Cervantes, E., & Jiménez-Fernández, M. (2019). Microencapsulation of cocoa liquor nanoemulsion with whey protein using spray drying to protection of volatile compounds and antioxidant capacity. Journal of Microencapsulation, 36, 447-458. https://doi.org/10.1080/02652048.2019.1638463
Cañas, S., Rebollo-Hernanz, M., Braojos, C., Benítez, V., Ferreras-Charro, R., Dueñas, M., Aguilera, Y., & Martín-Cabrejas, M. A. (2022). Understanding the gastrointestinal behavior of the coffee pulp phenolic compounds under simulated conditions. Antioxidants, 11, 1818. https://doi.org/10.3390/antiox11091818
Capocchi, A., Bottega, S., Spanò, C., & Fontanini, D. (2016). Phytochemicals and antioxidant capacity in four Italian traditional maize (Zea mays L.) varieties. International Journal of Food Sciences and Nutrition, 68(5), 515–524. https://doi.org/10.1080/09637486.2016.1261809
Cárdenas, A., Gómez, M., & Frontana, C. (2014). Development of an electrochemical cupric reducing antioxidant capacity method (CUPRAC) for antioxidant analysis. Electrochimica Acta, 128, 113–118. https://doi.org/10.1016/j.electacta.2013.10.191
Cárdenas-Hernández, A., Beta, T., Loarca-Piña, G., Castaño-Tostado, E., Nieto-Barrera, J. O, & Mendoza, S. (2016). Improved functional properties of pasta: Enrichment with amaranth seed flour and dried amaranth leaves. Journal of Cereal Science, 72, 84–90. https://doi.org/10.1016/j.jcs.2016.09.0140733-5210
Carocho, M., & Ferreira, I. C. F. R. (2013) A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51, 15–25. https://doi.org/10.1016/j.fct.2012.09.021
Casas-Junco, P. P., Ragazzo-Sánchez, J. A., Solís-Pacheco, J. R., Aguilar-Uscanga, B. R., Ságayo-Ayerdi, S. G., & Calderón-Santoyo, M. (2021). Physicochemical, aromatic, sensory properties and antioxidant activity of roasted coffee (Coffea arabica L.) treated with cold plasma technology. Biotecnia, 23, 120–126. https://doi.org/10.18633/biotecnia.v23i2.1407
Castro-López, C., Bautista-Hernández, I., González-Hernández, M. D., Martínez-Ávila, G. C. G., Rojas, R., Gutiérrez-Díez, A., Medina-Herrera, N., & Aguirre-Arzola, V. (2019). Polyphenolic profile and antioxidant activity of leaf purified hydroalcoholic extracts from seven Mexican Persea americana cultivars. Molecules, 24, 173. https://doi.org/10.3390/molecules24010173
Cenobio-Galindo, A. J., Ocampo-López, J., Reyes-Munguía, A., Carrillo-Inungaray, M. L., Cawood, M., Medina-Pérez, G., Fernández-Luqueño, F., & Campos-Montiel, R. G. (2019). Influence of bioactive compounds incorporated in a nanoemulsion as coating on avocado fruits (Persea americana) during postharvest storage: Antioxidant activity, physicochemical changes and structural evaluation. Antioxidants, 8, 500. https://doi.org/10.3390/antiox8100500
Cetinkaya, Y., Göçer, H., Menzek, A., & Gulcin, I. (2012) Synthesis and antioxidant properties of (3,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives. ArchPharm, 345, 323–334. https://doi.org/10.1002/ardp.201100272
Chen, L., Xin, X., Yuan, Q., Su, D., & Liu, W. (2013). Phytochemical properties and antioxidant capacities of various colored berries. Journal of the Science of Food and Agriculture, 94, 180–188. https://doi.org/10.1002/jsfa.6216
Chuacharoen, T., Polprasert, C., & Sabliov, C. M. (2024). Avocado seed extract encapsulated in zein nanoparticles as a functional ingredient. Journal of Agriculture and Food Research, 18, 101332. https://doi.org/10.1016/j.jafr.2024.101332
Clifford, M. N., & Scalbert, A. (2000) Ellagitannins – nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80, 1118–1125. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1118::AID-JSFA570>3.0.CO;2-9
Coban, T. A., Beydemir, S., Gulcin, I., & Ekinci, D. (2007) Morphine inhibits erythrocyte carbonic anhydrase in vitro and in vivo. Biological and Pharmaceutical Bulletin, 30, 2257–2261. https://doi.org/10.1248/bpb.30.2257
Coco, M. G., & Vinson, J. A. (2019) Analysis of popcorn (Zea Mays L. var. Everta) for antioxidant capacity and total phenolic content. Antioxidants, 8, 22. https://doi.org/10.3390/antiox8010022
Cömert, E. D., & Gökmen, V. (2018). Evolution of food antioxidants as a core topic of food science for a century. Food Research International, 105, 76–93. https://doi.org/10.1016/j.foodres.2017.10.056
Constantino, L. V., Zeffa, D. M., Ventorim, M. F., Goncalves, L. S. A, Marcos, A. W., dos Santos-Sanzovo, A. W., Rossetto, S. M., Alves, S. M., Resende, J. T. V., & Takahashi, L. S. A. (2021). Nutritional quality and technological potential of pitaya species. Semina: Ciências Agrárias, 42, 2023–2030. https://doi.org/10.5433/1679-0359.2021v42n3Supl1p2023
Coria-Ávalos, V. M., Muñoz-Flores, H. J., Toledo-Aguilar, R., Sáenz-Reyes, J. T., Peñaloza-Santa Cruz, G., & Barrera-Ramírez, R. (2022). Rendimiento de variedades de jamaica con relación a fechas de poda apical. Revista Mexicana de Ciencias Agrícolas, 27, 45–56. https://doi.org/10.29312/remexca.v13i27.3177
Corona-Terán, J., López-Orona, C. A., Romero-Gómez, S. J., & Martínez-Campos, A. R. (2017). Caracterización física, contenido de fenoles y capacidad antioxidante de maíces nativos (Zea mays L.) del Estado de México. ITEA, 113, 5-19. https://doi.org/10.12706/itea.2017.001
Corrales-García, J. E., García-Mateos, M. R., Martínez-López, E., Barrientos-Priego, A. F., Ybarra-Moncada, M. C., Ibarra-Estrada, E., Méndez-Zúñiga, S. M., & Becerra-Morales, D. (2019). Anthocyanin and oil contents, fatty acids profiles and antioxidant activity of Mexican landrace avocado fruits. Plant Foods for Human Nutrition, 74, 210–215. https://doi.org/10.1007/s11130-019-00721-1
Cortez, D., Flores, M., Calampa, L., Oliva-Cruz, M., Goñas, M., Meléndez-Mori J. B., & Chavez, S. G. (2024). From the seed to the cocoa liquor: traceability of bioactive compounds during the postharvest process of cocoa in Amazonas-Peru. Microchemical Journal, 201, 110607. https://doi.org/10.1016/j.microc.2024.110607
Cruz-Chamorro, I., Santos-Sánchez, G., Martín, F., Fernández-Pachón, M. S., Hornero-Méndez, D., & Cerillo, I. (2024). Evaluation of the impact of the ripening stage on the composition and antioxidant properties of fruits from organically grown tomato (Solanum lycopersicum L.) spanish varieties. Foods, 13, 2337. https://doi.org/10.3390/foods13152337
Cui, Q., Du, R., Liu, M., & Rong, L. (2020) Lignans and their derivatives from plants as antivirals. Molecules, 25, 183. https://doi.org/10.3390/molecules25010183
Dabas, D., Elias, R. J., Ziegler, G. R., & Lamber, J. D. (2019). In vitro antioxidant and cancer inhibitory activity of a colored avocado seed extract. International Journal of Food Science, 2019, 6509421. https://doi.org/10.1155/2019/6509421
Davey, M. W., Van Montagu, M., Inzé, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I. J. J., Strain, J.J., Favel, D., & Fletcher, J. (2002). Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80, 825–860. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7%3C825::AID-JSFA598%3E3.0.CO;2-6
Del Rio, L. A. (2015). ROS and RNS in plant physiology: an overview. Journal of Experimental Botany, 66, 2827–37. https://doi.org/10.1093/jxb/erv099
DeLeon, E. R., Gao, Y., Huang, E., Arif, M., & Arora, N. (2016). A case of mistaken identity: Are reactive oxygen species actually reactive sulfide species? American journal of physiology. Regulatory, integrative and comparative physiology, 310, R549–60. https://doi.org/10.1152/ajpregu.00455.2015
Delgado-Vargas, F., Sicairos-Medina, L. Y., Luna-Mandujan, A. G., López-Angulo, G., Salazar-Salas, N. Y., Vega-García, M. O., Heredia, J. B., & López-Valenzuela, J. A. (2018). Phenolic profiles, antioxidant and antimutagenic activities of Solanum lycopersicum var. cerasiforme accessions from Mexico. CYTA – Journal of Food, 16, 715–722. https://doi.org/10.1080/19476337.2018.1481146
Erazo-Lara, A., García-Pastor, M. A., Padilla-González, P. A., Valero, D., & Serrano, M. (2024). Preharvest elicitors as a tool to enhance bioactive compounds and quality of both peel and pulp of yellow pitahaya (Selenicereus megalanthus Haw.) at harvest and during postharvest storage. International Journal of Molecular Sciences, 25, 5435. https://doi.org/10.3390/ijms25105435
Espinosa-Alonso, L. G., Paredes-López, O., Valdez-Morales, M., & Oomah, B. D. (2017). Avocado oil characteristics of Mexican creole genotypes. European Journal of Lipid Science and Technology, 119, 1600406. https://doi.org/10.1002/ejlt.201600406
Espitia-López, J., Verde-Calvo, J. R., Escalona-Buendia, H. B., & Méndez-Iturbe, D. (2014). Effect of temperature during bottle aging on the flavor profile and antioxidant capacity of ruby cabernet red wine. In: V. Ferreira, & R. Lopez (Eds.), Flavour Science (pp. 263–266) Elsevier Inc. http://doi.org/10.1016/B978-0-12-398549-1.00050-7
Fernandes, F., Ramalhosa, E., Pires, P., Verdial, J., Valentao, P., Andrade, P., Bento, A., & Pereira, J. A. (2013). Vitis vinifera leaves towards bioactivity. Industrial Crops and Products, 43, 434–440. https://doi.org/10.1016/j.indcrop.2012.07.031
Fernández-Arroyo, S., Rodríguez-Medina, I. C., Beltrán-Debón, R., Pasini, F., Joven, J., Micol, V., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2011). Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Research International, 44, 1490–1495. https://doi.org/10.1016/j.foodres.2011.03.040
Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6, 466–488. https://doi.org/10.3390/nu6020466.
Figueroa-Cares, I. E., Cruz-Álvarez, O., Martínez-Damián, M. T., Rodríguez-Pérez, J. E., Colinas-León, M. T., & Valle-Guadarrama, S. (2018). Nutrimental quality and antioxidant capacity in native tomato varieties and genotypes (Solanum lycopersicum L.). Revista de la Facultad de Agronomía de la Universidad del Zulia, 35, 63–84.
Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73, 627–650. https://doi.org/10.1016/S0021-9258(18)84277-6.
Fridovich, I. (1998). Oxygen toxicity: a radical explanation. Journal of Experimental Biology, 201, 1203–1209. https://doi.org/10.1242/jeb.201.8.1203
Gallegos-Infante, J. A., Rocha-Guzmán, N. E., González-Laredo, R. F., & Pulido-Alonso, J. (2010) Effect of processing on the antioxidant properties of extracts from Mexican barley (Hordeum vulgare) cultivar. Food Chemistry, 119, 903-906. https://doi.org/10.1016/j.foodchem.2009.07.044
Ganesan, K., Kumar, K. S., & Rao, P. V. S. (2011). Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innovative Food Science & Emerging Technologies, 12, 73–78. https://doi.org/10.1016/j.ifset.2010.11.005
García, J. A., Garrido, I., Ortega, A., del Moral, J., Llerena, J. L., & Espinosa, F. (2022). Physiological and molecular responses of Vitis vinifera cv. Tempranillo affected by esca disease. Antioxidants, 11, 1720. https://doi.org/10.3390/antiox11091720
García-Solís, P., Yahia, E. M., Morales-Tlalpan, V., & Diaz-Muñoz, M. (2009). Screening of antiproliferative effect of aqueous extracts of plant foods consumed in México on the breast cancer cell line MCF-7. International Journal of Food Sciences and Nutrition, 60, 32–46. https://doi.org/10.1080/09637480802312922
Garza-López, P. M., Suárez-Vergel, G., Hamdan-Partida, A., & Loera, O. (2015). Variations in oxygen concentration cause differential antioxidant response and expression of related genes in Beauveria bassiana. Fungal Biology, 119, 257–263. https://doi.org/10.1016/j.funbio.2014.12.012
Gómez-Aldapa, C. A., Portillo-Torres, L. A., Villagómez-Ibarra, J. R., Rangel-Vargas, E. R., Téllez-Jurado, A., Cruz-Gálvez, A. M., & Castro-Rosas, J. (2017). Survival of foodborne bacteria on strawberries and antibacterial activities of Hibiscus sabdariffa extracts and chemical sanitizers on strawberries. Journal of Food Safety, 38, e12378. https://doi.org/10.1111/jfs.12378
González-Mendoza, D., Tzintzun-Camacho, O., & Mendez-Trujillo, V. (2022). Determination of antioxidant activity and phenolic compounds in different Mexican craft beers. Revista Colombiana de Investigaciones Agroindustriales, 9, 46–54.
Guevara-Terán, M., Gonzalez-Paramás, A. M., Beltrán-Noboa, A., Giampieri, F., Battino, M., Tejera, E., & Alvarez-Suarez, J. M. (2022). Influence of altitude on the physicochemical composition and antioxidant capacity of strawberry: A preliminary systematic review and meta-analysis. Phytochemistry Reviews, 22, 1567–158. https://doi.org/10.1007/s11101-022-09834-z
Gulcin, I. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94, 651–715. https://doi.org/10.1007/s00204-020-02689-3
Gutiérrez-Alcántara, E. J., Gómez-Aldapa, C. A., Román-Gutiérrez, A. D., Rangel-Vargas, E., González-Olivares, L. G., & Castro-Rosas, J. (2016). Antimicrobial activity of roselle Hibiscus sabdariffa calix extracts on culture media and carrots against multidrug-resistant Salmonella strains isolates from raw carrots. Journal of Food Safety, 36, 450–458. https://doi.org/10.1111/jfs.12259
Gutiérrez-Alcántara, E. J., Rangel-Vargas, E., Gómez-Aldapa, C. A., Falfan-Coretes, R. N., Rodríguez-Marín, M. L., Godínez-Oviedo, H., & Castro-Rosas, J. (2015). Antibacterial effect of roselle extracts (Hibiscus sabadariffa), sodium hypochlorite and acetic acid against multidrug-resistant Salmonella strains isolated from tomatoes. Letters in Applied Microbiology, 62, 177–184. https://doi.org/10.1111/lam.12528
Halliwell, B. (1997). Antioxidants in human health and disease. Annual Review of Nutrition, 16, 33–50. https://doi.org/10.1146/annurev.nu.16.070196.000341
Hallsworth, J.E., & Magan, N. (1996). Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Applied and Environmental Microbiology, 62, 2435–2442. https://doi.org/10.1128/aem.62.7.2435-2442.1996
Harakotr, B., Suriharn, B., Tangwongchai, R., Scott, M. P., & Lertrat, K. (2014). Anthocyanins and antioxidant activity in coloured waxy corn at different maturation stages. Journal of Functional Foods, 9, 109–118. https://doi.org/10.1016/j.jff.2014.04.012
Harborne, J. B., Baxter, H., & Moss, G. P. (1999). Phytochemical dictionary: a handbook of bioactive compounds from plants (2nd ed.) Taylor and Francis.
Hernández-Hernández, C., Fernández-Cabanás, V. M., Rodríguez-Gutiérrez, G., Fernández-Prior, A., & Morales-Sillero, A. (2022). Rapid screening of unground cocoa beans based on their content of bioactive compounds by NIR spectroscopy. Food Control, 131, 108347. https://doi.org/10.1016/j.foodcont.2021.108347
Hernández-Hernández, C., Morales-Sillero, A., Fernández-Bolaños, J., Bermúdez-Oria, A., Azpeitia-Morales, A., & Rodríguez-Gutiérrez, G. (2019). Cocoa bean husk: industrial source of antioxidant phenolic extract. Journal of the Science of Food and Agriculture, 99, 325–333. https://doi.org/10.1002/jsfa.9191
Hernández-Hernández, C., Viera-Alcaide, I., Morales-Sillero, A. M., Fernández-Bolaños, J., & Rodríguez-Gutiérrez, G. (2018). Bioactive compounds in Mexican genotypes of cocoa cotyledon and husk. Food Chemistry, 240, 831–839. https://doi.org/10.1016/j.foodchem.2017.08.018
Hervert-Hernández, D., & Goñi, I. (2011). Contribution of beverages to the intake of polyphenols and antioxidant capacity in obese women from rural Mexico. Public Health Nutrition, 15, 6–12. https://doi.org/10.1017/S1368980011001753
Hou, W. C., Lin, R. D., Cheng, K. T., Hung, Y. T., Cho, C. H., Chen, C. H., Hwang, S. Y., & Lee, M. H. (2003). Free radical-scavenging activity of Taiwanese native plants. Phytomedicine, 10, 170–175. https://doi.org/ 10.1078/094471103321659898
Hua, Q., Chen, C., Tel-Zur, N., Wang, H., Wu, J., Chen, J., Zhang, Z., Zhao, J., Hu, G., & Qin, Y. (2018). Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiology and Biochemistry, 126, 117–125. https://doi.org/10.1016/j.plaphy.2018.02.027
Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856. https://doi.org/10.1021/jf030723c
Huyut, Z., Beydemir, S., & Gulcin, I. (2017). Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochemistry Research International, 2017, 7616791. https://doi.org/10.1155/2017/7616791
Jabeur, I., Pereira, E., Barros, L., Calhelha, R. C., Sokovic, M., Oliveira, M. B. P. P., & Ferreira, I. C. F. R. (2017). Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Research International, 100, 717–723. https://doi.org/10.1016/j.foodres.2017.07.073
Jacobo-Velázquez, D. A., & Hernández-Brenes, C. (2012). Stability of avocado paste carotenoids as affected by high hydrostatic pressure processing and storage. Innovative Food Science and Emerging Technologies, 16, 121–128. https://doi.org/10.1016/j.ifset.2012.05.001
Jaimez-Ordaz, J., Contreras-López, E., Hernández-Sánchez, T., González-Olivares, L. G., Añorve-Morga, J., & Ramírez-Godínez, J. (2021). Comparative evaluation of four extraction methods of antioxidant compounds from Decatropis bicolor in aqueous medium applying response surface design. Molecules, 26, 1042. https://doi.org/10.3390/molecules26041042
Jiang, Y., Subbiah, V., Wu Hm, K., Bk, A., Sharifi-Rad, J., & Suleria, H. A. R. (2022). Phenolic profiling of berries waste and determination of their antioxidant potential. Journal of Food Quality, 2022, 5605739. https://doi.org/10.1155/2022/5605739
Kemp, M., Go, Y. M., & Jones, D. P. (2008). Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radical Biology and Medicine, 44, 921–37. https://doi.org/10.1016/j.freeradbiomed.2007.11.008
Kim, E. Y., Park, S. A., Park, B. J., Lee, Y., & Oh, M. M. (2014). Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Horticulture, Environment, and Biotechnology, 55, 506–513. https://doi.org/10.1007/s13580-014-0121-7
Kisaca, G., & Gazioglu-Sensoy, R. I. (2023). Phenolic contents, organicacids and antioxidant capacities of twenty grape (Vitis vinifera L.) cultivars having different berry colors. Journal of Food Measurement and Characterization, 17, 1354–1370. https://doi.org/10.1007/s11694-022-01698-3
Krawczyk, H. (2019) The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives. Bioorganic Chemistry, 90, 103073. https://doi.org/10.1016/j.bioorg.2019.103073
Labunskyy, V. M., Hatfield, D. L., & Gladyshev, V. N. (2014). Selenoproteins: molecular pathways and physiological roles. Physiological Reviews, 94, 739–77. https://doi.org/10.1152/physrev.00039.2013
Liang, Z., Cheng, L., Zhong, G. Y., & Liu, R. H. (2014). Antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes. PLoS One, 9, e105146. https://doi.org/10.1371/journal.pone.0105146
Liao, Y. C., Kim, T., Silva, J. L., Hu, W. Y., & Che, B. Y. (2022). Effects of roasting degrees on phenolic compounds and antioxidant activity in coffee beans from different geographic origins. LWT, 168, 113965. https://doi.org/10.1016/j.lwt.2022.113965
Lingua, M. S., Fabani, M., Wunderlin, D. A., & Baroni, M. V. (2016). From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chemistry, 208, 228–238. https://doi.org/10.1016/j.foodchem.2016.04.009
López, T., Prado-Barragán, A., Navárez-Moorillón, G. V., Contreras, J. C., Rodríguez, R., & Aguilar, C. N. (2013). Enhancement of antioxidant capacity of coffee pulp extracts by solid-state lactic fermentation. CyTA – Journal of Food, 11, 359–365. https://doi.org/10.1080/19476337.2013.773563
López-Corona, A. V., Valencia-Espinosa, I. V., González-Sánchez, F. A., Sánchez-López, A. L., García-Amezquita, L. E., & García-Varela, R. (2022). Antioxidant, anti-inflammatory and cytotoxic activity of phenolic compound family extracted from raspberries (Rubus idaeus): A general review. Antioxidants, 11, 1192. https://doi.org/10.3390/antiox11061192
López-Martínez, L. X., Parkin, K. L., & García, H. S. (2011). Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods for Human Nutrition, 66, 41–47. https://doi.org/10.1007/s11130-011-0210-z
López-Mejía, O. A., López-Malo, A., & Palou, E. (2014). Antioxidant capacity of extracts from amaranth (Amaranthus hypochondriacus L.) seeds or leaves. Industrial Crops and Products, 53, 55–59. https://doi.org/10.1016/j.indcrop.2013.12.017
Ma, Y., Xu, Z., Wang, L., Ding, R., Zhang, Y., Wang, J., Wang, P., Yao, W., Li, X., Li, G., & Hu, H. (2024). The light-responsive transcription factor SlBBX20 improves saline-alkali resistance of Solanum lycopersicum by affecting photosynthetic capacity, antioxidant capacity, and osmotic adjustment. Environmental and Experimental Botany, 224, 105818. https://doi.org/10.1016/j.envexpbot.2024.105818
Macías-Garbett, R., Sosa-Hernández, J. E., Iqbal, H. M. N., Contreras-Esquivel, J. C., Chen, W. N., Melchor-Martínez, E. M., & Parra-Saldívar, R. (2022). Combined pulsed electric field and microwave-assisted extraction as a green method for the recovery of antioxidant compounds with electroactive potential from coffee agro-waste. Plants, 11, 2362. https://doi.org/10.3390/plants11182362
Magaña-Cerino, J. M., Tiessen, A., Soto-Luna, I. C., Peniche-Pavía, H. A., Vargas-Guerrero, B., Domínguez-Rosales, A. J., García-López, P. M., & Gurrola-Díaz, C. M. (2020). Consumption of nixtamal from a new variety of hybrid blue maize ameliorates liver oxidative stress and inflammation in a high-fat diet rat model. Journal of Functional Foods, 72, 104075. https://doi.org/10.1016/j.jff.2020.104075
Markurin, L., Corbin, C., Renouard, S., Drouet, S., Gutierrez, L., Mateljak, I., Auguin, D., Hano, C., Fuss, E., & Laine, E. (2019) Pinoresinol–lariciresinol reductases, key to the lignan synthesis in plants. Planta, 249, 1695-1714. https://doi.org/10.1007/s00425-019-03137-y
Martínez, J. P., Fuentes, R., Farías, K., Lizana, C., Alfaro, J. F., Fuentes, L., Calabrese, N., Bigot, S., Quinet, M., & Lutts, S. (2020). Effects of salt stress on fruit antioxidant capacity of wild (Solanum chilense) and domesticated (Solanum lycopersicum var. cerasiforme) tomatoes. Agronomy, 10, 1481. https://doi.org/10.3390/agronomy10101481
Martínez-Ruíz, C., Lozano, G., Roldán-Cruz, C., Meraz, M., & Rodríguez-Huezo, M. E. (2018). Evolution of antioxidant activity in heated coffee brew. Revista Mexicana de Ingeniería Química, 17, 613–619. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/MartinezC
Mendez-Flores, A., Hérnandez-Almanza, A., Sáenz-Galindo, A., Morlett-Chávez, J., Aguilar, C. N., & Ascacio-Valdés, J. (2018). Ultrasound-assisted extraction of antioxidant polyphenolic compounds from Nephelium lappaceum L. (Mexican variety) husk. Asian Pacific Journal of Tropical Medicine, 11, 676–681. https://doi.org/10.4103/1995-7645.248339.
Mendez-Trujillo, V., & González-Mendoza, D. (2021). Preliminary studies of bioactive compounds and color in Mexican read wines from Baja California region. Revista Colombiana de Investigaciones Agroindustriales, 8, 42–49. https://doi.org/10.23850/24220582.3758
Mendoza-Bacilio, C. I., Epifanio-Gómez, R., Yam-Puc, A., Avila-Caballero, L. P., Palemón‐Alberto, F., Torres-Guzmán, F., & Bello-Martínez, J. (2022). Color influence on phenolic compounds and bioactive properties of honey from Guerrero, Mexico. Biotecnia, 24, 5–11. https://doi.org/10.18633/biotecnia.v24i2.1384
Mihn, N. P. (2021). Influence of thermal treatment on anthocyanin, total phenolic content and antioxidant capacity of Pigmented Maize (Zea mays L.). Plant Science Today, 8, 1075–1078. https://doi.org/10.14719/pst.2021.8.4.1294
Milán-Carrillo, J., Montoya-Rodríguez, A., Gutiérrez-Dorado, R., Perales-Sánchez, X., & Reyes-Moreno, C. (2012). Optimization of extrusion process for producing high antioxidant instant amaranth (Amaranthus hypochondriacus L.) flour using response surface methodology. Applied Mathematics, 3, 1516–1525. https://doi.org/10.4236/am.2012.330211
Miramontes‑Corona, C. Torres-Santiago, G., Rodriguez, M. M. J., & Corona-González, R. I. (2024). Phenolic profile, antioxidant activity and antimicrobial properties of avocado (Persea americana) seed extracts. Chemical Papers, 78, 5061–5069. https://doi.org/10.1007/s11696-024-03452-z
Miranda-Hernández, F., Garza-López, P. M., & Loera, O. (2016). Cellular signaling in cross protection: An alternative to improve mycopesticides. Biological Control, 103, 196–203. https://doi.org/10.1016/j.biocontrol.2016.09.007
Molina-Quijada, D. M. A., Medina-Juárez, L. A., González-Aguilar, G. A., Robles-Sánchez, R. M., & Gámez-Meza, N. (2010). Phenolic compounds and antioxidant activity of table grape (Vitis vinifera L.) skin from northwest Mexico. CyTA – Journal of Food, 8, 57–63. https://doi.org/10.1080/19476330903146021
Monego, D. L., Barcellos da Rosa, M., & Cícero do Nascimento, P. (2017). Applications of computational chemistry to the study of the antiradical activity of carotenoids: a review. Food Chemistry, 217, 37–44. https://doi.org/10.1016/j.foodchem.2016.08.073
Montagner, G. E., Wingert, N. R., Stein, C. d. S., Moresco, R. N., Fogaça, A. d. O., & Gomes, P. (2022). Optimization of the extraction of antioxidant compounds from grape seed from winemaking waste. Sustainable Chemistry and Pharmacy, 30, 100856. https://doi.org/10.1016/j.scp.2022.100856
Montero-Vargas, J. M., Ortíz-Islas, S., Ramírez-Sánchez, O., García-Lara, S., & Winkler, R. (2020). Prediction of the antioxidant capacity of maize (Zea mays) hybrids using mass fingerprinting and data mining. Food Bioscience, 37, 100647. https://doi.org/10.1016/j.fbio.2020.100647
Montiel-Sánchez, M., García-Cayuela, T., Gómez-Maqueo, A., García, H. S., & Canoa. M. P. (2021). In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chemistry, 342, 128087. https://doi.org/10.1016/j.foodchem.2020.128087
Moure, A., Cruz, J. M., Franco, D., Domínguez, J. M., Sineiro, J., Domínguez, H., & Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72, 145–171. https://doi.org/10.1016/S0308-8146(00)00223-5
Munguía-Ameca, G., Ortega-Cerrilla, M. E., Zetina-Córdoba, P., Díaz-Cruz, A., Soto-Hernández, M., & Herrera-Haro, J. (2018). Chemical composition and antioxidant capacity of coffee pulp. Ciência e Agrotecnologia, 42, 307–313. https://doi.org/10.1590/1413-70542018423000818
Muñiz-Márquez, D. B., Rodríguez, R., Balagurusamy, N., Carrillo, M. L., Belmares, R., Contreras, J. C., Nevárez, G. V., & Aguilar, C. N. (2014). Phenolic content and antioxidant capacity of extracts of Laurus nobilis L., Coriandrum sativum L. and Amaranthus hybridus L., CyTA – Journal of Food, 12, 271–276. https://doi.org/10.1080/19476337.2013.847500
Muñoz-Bernal, O. A., de la Rosa, L. A., Rodrigo-García, J., Martínez-Ruiz, N. R., Ságayo-Ayerdi, S., Rodríguez, L., Fuentes, E., Palomo, I., & Alvarez-Parrilla, E. (2021). Phytochemical characterization and antiplatelet activity of Mexican red wines and their by-products. South African Journal of Enology and Viticulture, 42, 77–90. https://doi.org/10.21548/42-1-4450
Navidad-Murrieta, M. S., Pérez-Larios, A., Sánchez-Burgos, J. A., Ragazzo-Sánchez, J. A., Luna-Bárcenas, G., & Sáyago-Ayerdi, S. G. (2020). Use of a Taguchi design in Hibiscus sabdariffa extracts encapsulated by spray-drying. Foods, 9, 128. https://doi.org/10.3390/foods9020128
Nemzer, B., Lin, Y., & Huang, D. (2019). Antioxidants in sprouts of grains. In: H. Feng, B. Nemzer., & J. W. DeVries (Eds.), Sprouted grains. Nutritional value, production and applications (pp. 55–68). Elsevier. https://doi.org/10.1016/B978-0-12-811525-1.00003-8
Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5, 27986–28006. https://doi.org/10.1039/C4RA13315C
Ochoa-Zarzosa, A., Báez-Magaña, M., Guzmán-Rodríguez, J. J., Flores-Alvarez, L. J., Lara-Márquez, M., Zavala-Guerrero, B., Salgado-Garciglia, R., López Gómez, R., & López-Meza, J. E. (2021). Bioactive molecules from native Mexican avocado fruit (Persea americana var. drymifolia): A review. Plant Foods for Human Nutrition, 76, 133–142. https://doi.org/10.1007/s11130-021-00887-7
Orbe-Chamorro, M., Manosalvas-Quiroz, L. A., Pinto-Mosquera, N., & Samaniego, I. (2024). Effect of fermentation parameters on the antioxidant activity of Ecuadorian cocoa (Theobroma cacao L.). AIMS Agriculture and Food, 9, 872–886. https://doi.org/10.3934/agrfood.2024047
Osorio-Arias, J., Contreras-Calderón, J., Martínez-Monteagudo, S. I., & Vega-Castro, O. (2020). Nutritional and functional properties of spent coffee ground-cheese whey powder. Journal of Food Process Engineering, 45, e13524. https://doi.org/10.1111/jfpe.13524
Oztaskin, N., Çetinkaya, Y., Taslimi, P., Göksu, S., & Gulcin, I. (2015). Antioxidant and acetylcholinesterase inhibition properties of novel bromophenol derivatives. Bioorganic Chemistry, 60, 49–57. https://doi.org/10.1016/j.bioorg.2015.04.006
Öztürk, A., & Uzun, B. (2024). Development and morphological characterization of purple sweet corn lines. Maydica, 67, 1-10.
Palomino, L. García, C. M., Gil, J. H., Rojano, B. A., Durango, D. L. (2009). Determination of phenolic content and evaluation of antioxidant activity of propolis from Antioquia (Colombia). Vitae, 16, 388–395. https://doi.org/ 10.17533/udea.vitae.3020
Pan, M., Liu, K., Yang, J., Liu, S., Wang, S., & Wang, S. (2020). Advances on food-derived peptidic antioxidants - a review. Antioxidants, 9, 799. https://doi.org/10.3390/antiox9090799
Paucar-Menacho, L. M., Martínez-Villaluenga, C., Dueñas, M., Frías, J., & Peñas, E. (2017). Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT, 76, 236–244. https://doi.org/10.1016/j.lwt.2016.07.064
Pazinatto, C., Malta, L. G., Pastore, G. M., & Netto, F. M. (2013). Antioxidant capacity of amaranth products: effects of thermal and enzymatic treatments. Food Science and Technology, 33, 485–493. https://doi.org/10.1590/S0101-20612013005000076
Pérez-Guzmán, D., Montesinos-Matías, R., Arce-Cervantes, O., Gómez-Quiroz, L. E., Loera, O., & Garza-López, P. M. (2016). Reactive oxygen species production, induced by atmospheric modification, alter conidial quality of Beauveria bassiana. Journal of Applied Microbiology, 121, 453–460. https://doi.org/10.1111/jam.13156
Petrov-Ivanković, A., Ćorović, M., Milivojević, A., Simović, M., Banjanac, K., Veljković, M., & Bezbradica, B. (2024). Berries pomace valorization: from waste to potent antioxidants and emerging skin prebiotics. International Journal of Fruit Science, 24, 85–101. https://doi.org/10.1080/15538362.2024.2322743
Pinela, J., Montoya, C., Carvalho, A. M., Martins, V., Rocha, F., Barata, A. M., Barros, L, & Ferreira, I. C. F. R. (2019). Phenolic composition and antioxidant properties of ex-situ conserved tomato (Solanum lycopersicum L.) germplasm. Food Research International, 125, 108545. https://doi.org/10.1016/j.foodres.2019.108545
Poole, L. B. (2015). The basics of thiols and cysteines in redox biology and chemistry. Free Radical Biology and Medicine, 80, 148–57. https://doi.org/10.1016/j.freeradbiomed.2014.11.013
Preciado-Saldaña, A. M., Domínguez-Avila, J. A., Ayala-Zavala, J. F., Villegas-Ochoa, M. A., Sáyago-Ayerdi, S. G., Wall-Medrano, A., González-Córdoba, A. F., & González-Aguilar, G. A. (2019). Formulation and characterization of an optimized functional beverage from hibiscus (Hibiscus sabdariffa L.) and green tea (Camellia sinensis L.). Food Science and Technology International, 25, 547–561. https://doi.org/10.1177/1082013219840463
Quiroz-Reyes, C. N., Aguilar-Méndez, M. A., Ramírez-Ortíz, M. E., & Ronquillo-De Jesús, E. (2013). Comparative study of ultrasound and maceration techniques for the extraction of polyphenos from cocoa beans (Theobroma cacao L.). Revista Mexicana de Ingeniería Química, 12, 11–18.
Quiroz-Reyes, C. N., Ronquillo-De Jesús, E., Durán-Caballero, N. E., & Aguilar-Méndez, M. A. (2014). Development and characterization of gelatin nanops loaded with a cocoa-derived polyphenolic extract. Fruits, 69, 481–489. https://doi.org/10.1051/fruits/2014034
Rahal, A., Kumar, A., & Singh, V. (2014). Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Research International, 2014, 761264. https://doi.org/10.1155/2014/761264
Reyes-García, V., Botella-Martínez, C., Juárez-Trujillo, N., Muñoz-Tébar, N., & Viuda-Martos, M. (2024). Pitahaya (Hylocereus ocamponis)-peel and -flesh flour obtained from fruit co-products—assessment of chemical, techno-functional and in vitro antioxidant properties. Molecules, 29, 2241. https://doi.org/10.3390/molecules29102241
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20, 933–956. https://doi.org/10.1016/0891-5849(95)02227-9
Rojas-Barquera, D., & Narváez-Cuenca C. E. (2009). Determinación de vitamina C, compuestos fenólicos totales y actividad antioxidante de frutas de guayaba (Psidium guajava L.) cultivadas en Colombia. Química Nova, 32, 2336–2340. https://doi.org/10.1590/S0100-40422009000900019
Ruesgas-Ramón, M., Suárez-Quiroz, M. L., González-Ríos, O., Baréa, B., Cazals, G., Figueroa-Espinoza, M. C., & Durand, E. (2020). Biomolecules extraction from coffee and cocoa by- and co-products using deep eutectic solvents. Journal of the Science of Food and Agriculture, 100, 81–91. https://doi.org/10.1002/jsfa.9996
SADER. (2021). Refrescante y nutritivo sabor de la Jamaica. Secretaría de Agricultura y Desarrollo Rural. Mexico. https://www.gob.mx/agricultura/articulos/refrescante-y-nutritivo-sabor-de-la-jamaica?idiom=e
Salazar-González, C., Vergara-Balderas, F. T., Ortega-Regules, A. E., & Guerrero-Beltrán, J. A. (2012). Antioxidant properties and color of Hibiscus sabdariffa extracts. Ciencia e Investigación Agraria, 39, 79–90. https://doi.org/10.4067/S0718-16202012000100006
Salazar-Montoya, J. A., Hereira-Pacheco, S., Cruz-Orea, A., & Ramos-Ramírez, E. G. (2022). Composition, antioxidant activity and rheological characteristics of spreadable pastes with blackberry pulp (Rubus fruticosus). Journal of Food Measurement and Characterization, 16, 1459–1471. https://doi.org/10.1007/s11694-022-01279-4
Salinas-Ríos, T., Sánchez-Torres, T., Ortega-Cerrilla, M. E., Soto-Hernández, M., Díaz-Cruz, A., Hernández-Bautista, J., Nava-Cuellar, C., & Vaquera-Huerta, H. (2014). Changes in composition, antioxidant content, and antioxidant capacity of coffee pulp during the ensiling process. Revista Brasileira de Zootecnia, 43, 492–498. https://doi.org/10.1590/S1516-35982014000900006
Samsonowicz, M., & Regulska, E. (2017). Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 757–771. https://doi.org/10.1016/j.saa.2016.10.031
Sánchez-Herrera, M., Martínez-Cano, E., Maldonado-Santoyo, M., & Aparicio-Fernández, X. (2014). Comparative study on the nutritional and antioxidant properties of two Mexican corn (Zea mays) based meals versus processed cereals. Archivos Latinoamericanos de Nutrición, 64, 116–122.
Sánchez-Velázquez, O. A., Montes-Ávila, J., Milán-Carrillo, J., Reyes-Moreno, C., Mora-Rochin, S., & Cuevas-Rodríguez, E. O. (2019). Characterization of tannins from two wild blackberries (Rubus spp) by LC–ESI–MS/MS, NMR and antioxidant capacity. Journal of Food Measurement and Characterization, 13, 2265–2274. https://doi.org/10.1007/s11694-019-00146-z
Sandoval-Sicairos, E. S., Domínguez-Rodríguez, M., Montoya-Rodríguez, A., Milán-Noris, A. K., Reyes-Moreno, C., & Milán-Carrillo, J. (2020). Phytochemical compounds and antioxidant activity modified by germination and hydrolysis in Mexican amaranth. Plant Foods for Human Nutrition, 75, 192–199. https://doi.org/10.1007/s11130-020-00798-z
Sarker, U., & Oba, S. (2018). Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biology, 18, 258. https://doi.org/10.1186/s12870-018-1484-1
Sarker, U., Islam, T., Rabbani, G., & Oba, S. (2018). Phenotypic divergence in vegetable amaranth for total antioxidant capacity, antioxidant profile, dietary fiber, nutritional and agronomic traits. Acta Agriculturae Scandinavica, Section-B Soil & Plant Science, 68, 67–76, https://doi.org/10.1080/09064710.2017.1367029
Sarker, U., Oba, S., & Daramy, M. A. (2020). Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Scientific Reports, 10, 3892. https://doi.org/10.1038/s41598-020-60252-7
Sáyago, S., & Goñi, A. I. (2010). Fuente de fibra antioxidante. Archivos Latinoamericanos de Nutrición, 60, 79–84.
Shahidi, F., & Ambigaipalan, P. (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018
Shen, X., Nie, F., Fanf, H., Liu, K., Li, Z., Li, X., Chen, Y., Chen, R., Zheng, T., & Fan, J. (2022). Comparison of chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities between coffee flowers and leaves as potential novel foods. Food Science & Nutrition, 11, 917–929 https://doi.org/10.1002/fsn3.3126
SIAP. (2016). Frutas del Bosque: Arándano, Frambuesa, Zarzamora Mexicanas. Secretaría de Agricultura Ganadería, Desarrollo Rural, Pesca y Alimentación. Mexico. https://www.gob.mx/cms/uploads/attachment/file/257076/Potencial-Frutas_del_Bosque.pdf
SIAP. (2024). Panorama Agroalimentario. La Ruta de la Transformación Agroalimentaria 2018-2024. Secretaría de Agricultura y Desarrollo Rural. Mexico. https://www.gob.mx/siap/acciones-y-programas/panorama-agroalimentario-258035
Sies, H. (1997). Oxidative stress: Oxidants and antioxidants. Experimental Physiology, 82, 291–295. https://doi.org/10.1113/expphysiol.1997.sp004024
Sies, H. (2020). Oxidative stress: Concept and some practical aspects. Antioxidants, 9, 852. https://doi.org/10.3390/antiox9090852
Sies, H., Carsten, B., & Jones, D. P. (2017). Oxidative stress. Annual Review of Biochemistry, 86, 715–748. https://doi.org/10.1146/annurev-biochem-061516-045037
Sindhi, V., Gupta, V., Sharma, K., Bhatnagar, S., Kumari, R., & Dhaka. N. (2013). Potential applications of antioxidants—a review. Journal of Pharmacy Research, 7, 828–835. https://doi.org/10.1016/j.jopr.2013.10.001
Sindi, H. A, Marshall, L. J., & Morgan, M. R. A. (2014). Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chemistry, 164, 23–29. https://doi.org/10.1016/j.foodchem.2014.04.097
Singh, A., Sabally, K., Kubow, S., Donnelly, D.J., Gariepy, Y., Orsat, V., & Raghavan, G.S.V. (2011). Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules, 16, 2218–2232. https://doi.org/10.3390/molecules16032218
Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178. http://doi.org/10.1016/S0076-6879(99)99017-1
Skendi, A. (2021). Alternatives to increase the antioxidant capacity of bread with phenolics. In C. M. Galanakis (Ed.). Trends in Wheat and Bread Making (pp. 311–341). Springer. https://doi.org/10.1016/C2019-0-02972-X
Skwaryło-Bednarz, B., Jamiołkowska, A., Kopacki M., Marcinek, B., Szmagara, M., & Kot, I. (2024). Impact of N fertilization and cultivar on amaranth nutrients and soil health. Acta Scientarium Polonorium Hortorum Cultus, 23, 117–134. https://doi.org/10.24326/asphc.2024.5313
Starkov, A. A. (2008). The role of mitochondria in reactive oxygen species metabolism and signaling. Annals of the New York Academy of Sciences, 1147, 37–52. https://doi.org/10.1196/annals.1427.015
Tenore, G. C., Novellino, E., & Basile, A. (2012). Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. Journal of Functional Foods, 4, 129–136. https://doi.org/10.1016/j.jff.2011.09.003
Tlecutil-Beristain, S., Viniegra-González, G., Díaz-Godínez, G., & Loera, O. (2010). Medium selection and effect of higher oxygen concentration pulses on Metarhizium anisopliae var. lepidiotum conidial production and quality. Mycopathologia, 169, 387–394. https://doi.org/10.1007/s11046-009-9268-7
Tovar-Pérez, E. G., Guerrero-Becerra, L., & Lugo-Cervantes, E. (2017). Antioxidant activity of hydrolysates and peptide fractions of glutelin from cocoa (Theobroma cacao L.) seed. CyTA – Journal of Food, 15, 189–196. https://doi.org/10.1080/19476337.2017.1297963
Vargas-Sánchez, R. D., Torres-Martínes, B. M., Torrescano-Urrutia, G. R., & Sánchez-Escalante, A. (2023). Physicochemical, techno-functional and antioxidant characterization of coffee silverskin. Biotecnia, 25, 43–50. https://doi.org/10.18633/biotecnia.v25i1.1755
Vega-López, B., Carvajal-Miranda, Y., Brenes-Peralta, L., Gamboa-Murillo, M., Venegas-Padilla, J., Jiménez-Bonilla, P., & Álvarez-Valverde, V. (2022). Phytonutraceutical evaluation of five varieties of tomato (Solanum lycopersicum) during ripening and processing. LWT, 164, 113592. https://doi.org/10.1016/j.lwt.2022.113592
Venskutonis, P. R., & Kraujalis, P. (2013). Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety, 12, 381–412. https://doi.org/10.1111/1541-4337.12021
Verona-Ruiz, A., Urcia-Cerna, J., & Paucar-Menacho, L. M. (2020). Pitahaya (Hylocereus spp.): Culture, physicochemical characteristics, nutritional composition, and bioactive compounds. Scientia Agropecuaria, 11, 439–453. https://doi.org/10.17268/sci.agropecu.2020.03.16
Villa-Rodríguez, J. A., Molina-Corral, F. J., Ayala-Zavala, F., Olivas, G. I., & González-Aguilar, G. A. (2011). Effect of maturity stage on the content of fatty acids and antioxidant activity of ‘Hass’ avocado. Food Research International, 44, 1231–1327. https://doi.org/10.1016/j.foodres.2010.11.012
Virgen-Carrillo, C. A., Valdés-Miramontes, E. H., Fonseca-Hernández, D., Luna-Vital, D. A., & Mojica, L. (2022). West Mexico berries modulate α-Amylase, α-Glucosidase and pancreatic lipase using in vitro and in silico approaches. Pharmaceuticals, 15, 1081. https://doi.org/10.3390/ph15091081
Vitale, E., Velikova, V., Tsonev, T., Costanzo, G., Paradiso, R., & Arena, C. (2022). Manipulation of light quality is an effective tool to regulate photosynthetic capacity and fruit antioxidant properties of Solanum lycopersicum L. cv. ‘Microtom’ in a controlled environment. PeerJ, 10, e13677. https://doi.org/10.7717/peerj.13677
Wang, L., Yang, S., Yang, Y., Jiang, H., Huang, W., Bian, Y., & Li, B. (2024). Effects of endogenous anthocyanins from purple corn on the quality, physicochemical properties and antioxidant capacity of bread. Journal of Food Measurement and Characterization, 18, 4678–4691. https://doi.org/10.1007/s11694-024-02523-9
Wang, W., Bostic, T. R., & Gu, L. (2010). Antioxidant. capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chemistry, 122, 1193–1198. https://doi.org/10.1016/j.foodchem.2010.03.114
Woolley, J. F., Stanicka, J., & Cotter, T. G. (2021). Recent advances in reactive oxygen species measurement in biological systems. Trends in Biochemical Sciences, 38, 556–565. https://doi.org/10.1016/j.tibs.2013.08.009
Xu, F., Luan, L. Y., Zhang, Z. W., Huo, S. S., Goa, X., Fang, Y. L., & Xi, Z. M. (2014). Phenolic profiles and antioxidant properties of young wines made from Yan73 (Vitis vinifera L.) and Cabernet Sauvignon (Vitis vinifera L.) grapes treated by 24-epibrassinolide. Molecules, 19, 10189–10207. https://doi.org/10.3390/molecules190710189
Yang, S., & Lian, G. (2020). ROS and diseases: role in metabolism and energy supply. Molecular and Cellular Biochemistry, 467, 1–12. https://doi.org/10.1007/s11010-020-03697-8
Zeghad, N., Ahmed, E., Belkhiri, A., Heyden, Y. V., & Demeyer, K. (2019). Antioxidant activity of Vitis vinifera, Punica granatum, Citrus aurantium and Opuntia ficus indica fruits cultivated in Algeria. Helyion, 5, e01575. https://doi.org/10.1016/j.heliyon.2019 e01575
Zhong, Y., & Shahidi F. (2015). Methods for the assessment of antioxidant activity in foods. In F. Shahidi (Ed.), Handbook of Antioxidants for Food Preservation (pp. 287–333). Springer. https://doi.org/10.1016/C2013-0-16454-9
Zitha, E. Z. M., Magalhaes, D. S., Carvalho-do Lago, R., Nunes-Carvahlo, E. E., Pasqual, M., & Vilas-Boas, E. V. B. (2022). Changes in the bioactive compounds and antioxidant activity in red-fleshed dragon fruit during its development. Scientia Horticulturae, 291, 110611. https://doi.org/10.1016/j.scienta.2021.110611
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Scientia Agropecuaria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).