Space-time analysis, severity of the wilt disease in escabeche pepper (Capsicum baccatum var. Pendulum) and identification of the causal agent (Phytophthora capsici L.) under subtropical climate conditions in Peru

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2024.041

Keywords:

Epidemiología, Espaciotemporal, Phytophthora capsici, Capsicum

Abstract

Phytophthora capsici is an aggressive pathogen in escabeche pepper on the Peruvian coast. Root rot has a strong correlation with humidity and environment. Disease behavior was evaluated epidemiologically using spatiotemporal variables. Severity was evaluated according to the advance of the secondary symptom according to grades 1 to 5. Then, coordinates of each plant were established by photogrammetric survey of a field with 1705 escabeche pepper plants. For temporal analysis, severity was adjusted to an exponential model (R2 = 0.909) and incidence to a Gompertz model (R2 = 0.921) that detected an initial delay of the disease due to temperature. For the spatial analysis, the Global Moran Index (Ii) showed a high spatial dependence of the disease reaching a peak of 0.4 and 0.7 for severity and incidence, respectively. Also, heat maps related to the Local Ii were generated from which an initial source of infestation was determined where the furrow irrigation started in random infestations. Then, the infestation spots were settled in areas of surface water accumulation. Also, rhizosphere samples were collected per plant by degree of severity on V8 or CMA whit PARB and PDA-A selective medium. As a result, significant differences were obtained between grade 1, grade 2, 3, 4 and grade 5. In addition, the effect on yield was significant for plants with grade 4 and 5 with respect to fruit weight (22.3 and 18.5g/fruit) and weight per plant (509.5 and 371.8g/plant), respectively.

References

Abbasi, S., Safaie, N., Sadeghi, A., & Shamsbakhsh, M. (2020). Tissue-specific synergistic bio-priming of pepper by two Streptomyces species against Phytophthora capsici. PLOS ONE, 15(3), e0230531. https://doi.org/10.1371/journal.pone.0230531

Alves, K. S., & Del Ponte, E. M. (2021). Analysis and simulation of plant disease progress curves in R: introducing the epifitter package. Phytopathology Research, 3(1), 22. https://doi.org/10.1186/s42483-021-00098-7

Balanagouda, P., Sridhara, S., Shil, S., Hegde, V., Naik, M. K., Narayanaswamy, H., & Balasundram, S. K. (2021). Assessment of the Spatial Distribution and Risk Associated with Fruit Rot Disease in Areca catechu L. Journal of Fungi, 7(10), 797. https://doi.org/10.3390/jof7100797

Belan, L. L., Pozza, E. A., Alves, M. de C., & Freitas, M. L. de O. (2018). Geostatistical analysis of bacterial blight in coffee tree seedlings in the nursery. Summa Phytopathologica, 44(4), 317–325. https://doi.org/10.1590/0100-5405/179559

Bellini, A., Ferrocino, I., Cucu, M. A., Pugliese, M., Garibaldi, A., & Gullino, M. L. (2020). A Compost Treatment Acts as a Suppressive Agent in Phytophthora capsici – Cucurbita pepo Pathosystem by Modifying the Rhizosphere Microbiota. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00885

Bi, Y., Jiang, H., Hausbeck, M. K., & Hao, J. J. (2012). Inhibitory effects of essential oils for controlling Phytophthora capsici. Plant Disease, 96(6), 797–803. https://doi.org/10.1094/PDIS-11-11-0933

Bock, C. H., Chiang, K.-S., & Del Ponte, E. M. (2021). Plant disease severity estimated visually: a century of research, best practices, and opportunities for improving methods and practices to maximize accuracy. Tropical Plant Pathology, 47(1), 25–42. https://doi.org/10.1007/s40858-021-00439-z

Casimiro, H. (2022). Control del moho gris (Botrytis cinerea Pers.) en tomate (Solanum lycopersicum) cv. Huascarán mediante fertilizantes foliares en La Molina. Tesis Ingeniero Agrónomo, Universidad Nacional Agraria La Molina, Perú.

Del Castillo Múnera, J., Belayneh, B., Lea-Cox, J., & Swett, C. L. (2019). Effects of Set-Point Substrate Moisture Control on Oomycete Disease Risk in Containerized Annual Crops Based on the Tomato– Phytophthora capsici Pathosystem. Phytopathology®, 109(8), 1441–1452. https://doi.org/10.1094/PHYTO-03-18-0096-R

Del Ponte, E. M., Pethybridge, S. J., Bock, C. H., Michereff, S. J., Machado, F. J., & Spolti, P. (2017). Standard Area Diagrams for Aiding Severity Estimation: Scientometrics, Pathosystems, and Methodological Trends in the Last 25 Years. Phytopathology®, 107(10), 1161–1174. https://doi.org/10.1094/PHYTO-02-17-0069-FI

Di Iorio, D., Walter, M., Lantinga, E., Kerckhoffs, H., & Campbell, R. E. (2019). Mapping European canker spatial pattern and disease progression in apples using GIS, Tasman, New Zealand. New Zealand Plant Protection, 72, 176–184. https://doi.org/10.30843/nzpp.2019.72.305

Dye, S. M., & Bostock, R. M. (2021). Eicosapolyenoic fatty acids induce defense responses and resistance to Phytophthora capsici in tomato and pepper. Physiological and Molecular Plant Pathology, 114, 101642. https://doi.org/10.1016/j.pmpp.2021.101642

Esgario, J. G. M., Krohling, R. A., & Ventura, J. A. (2020). Deep learning for classification and severity estimation of coffee leaf biotic stress. Computers and Electronics in Agriculture, 169, 105162. https://doi.org/10.1016/j.compag.2019.105162

Fernandez, A., Toledo, V., Wong, W., & Porra, A. (1999). Sobrevivencia y distribución en el suelo de Phytophthora nicotianae. CEIBA, 40(2), 263-268.

French-Monar, R. D., Jones, J. B., & Roberts, P. D. (2006). Characterization of Phytophthora capsici Associated with Roots of Weeds on Florida Vegetable Farms. Plant Disease, 90(3), 345–350. https://doi.org/10.1094/PD-90-0345

Gasparoto, M. C. G., Hau, B., Bassanezi, R. B., Rodrigues, J. C., & Amorim, L. (2018). Spatiotemporal dynamics of citrus huanglongbing spread: a case study. Plant Pathology, 67(7), 1621–1628. https://doi.org/10.1111/ppa.12865

Gomes, G. P., Zeffa, D. M., Constantino, L. V., Baba, V. Y., Silvar, C., et al. (2021). Diallel analysis of the morphoagronomic, phytochemical, and antioxidant traits in Capsicum baccatum var. pendulum. Horticulture, Environment, and Biotechnology, 62, 435-446.

González-Concha, L. F., Ramírez-Gil, J. G., García-Estrada, R. S., Rebollar-Alviter, Á., & Tovar-Pedraza, J. M. (2021). Spatiotemporal Analyses of Tomato Brown Rugose Fruit Virus in Commercial Tomato Greenhouses. Agronomy, 11(7), 1268. https://doi.org/10.3390/agronomy11071268

González, L. C., López, N. Y., Brito, R. G., Martín, C. V., & Vasallo, N. M. L. (2013). Análisis espacial de la incidencia de Phytophthora infestans (Mont.) De Bary y Phytophthora nicotianae Breda de Haan en papa. Centro Agrícola, 40(2), 45-50.

Huacamayta, B. (2021). Evaluación de la presencia de Phytophthora capsici en campo bajo condiciones de La Molina. Universidad Nacional Agraria La Molina. Tesis aun por publicar

Huded, S., Pramesh, D., Chittaragi, A., Sridhara, S., Chidanandappa, E., Prasannakumar, M. K., Manjunatha, C., Patil, B., Shil, S., Pushpa, H. D., Raghunandana, A., Usha, I., Balasundram, S. K., & Shamshiri, R. R. (2022). Spatial Distribution Patterns for Identifying Risk Areas Associated with False Smut Disease of Rice in Southern India. Agronomy, 12(12), 2947. https://doi.org/10.3390/agronomy12122947

Kabir, M. Y., Nambeesan, S. U., Bautista, J., & Díaz-Pérez, J. C. (2022). Plant water status, plant growth, and fruit yield in bell pepper (Capsicum annum L.) under shade nets. Scientia Horticulturae, 303, 111241. https://doi.org/10.1016/j.scienta.2022.111241

Kaur, N., Lozada, D. N., Bhatta, M., Barchenger, D. W., Khokhar, E. S., Nourbakhsh, S. S., & Sanogo, S. (2024). Insights into the genetic architecture of Phytophthora capsici root rot resistance in chile pepper (Capsicum spp.) from multi-locus genome-wide association study. BMC Plant Biology, 24(1), 416.

Kozonogova, E., & Dubrovskaya, J. (2020). Assessment of the Features of the Spatial Organization of the Russian Economy Based on the Global and Local Moran Indices (pp. 195–203). https://doi.org/10.1007/978-3-030-48531-3_14

Li, Q., Wang, J., Bai, T., Zhang, M., Jia, Y., Shen, D., Zhang, M., & Dou, D. (2020). A Phytophthora capsici effector suppresses plant immunity via interaction with EDS1. Molecular Plant Pathology, 21(4), 502–511. https://doi.org/10.1111/mpp.12912

López-Vásquez, J. M., & Castaño-Zapata, J. (2022). Assessment of the level of adjustment of three epidemiological models in the analysis of epidemics with incidences less than 100% such as the lethal wilt of oil palm (Elaeis guineensis Jacq.). Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales. https://doi.org/10.18257/raccefyn.1571

Lord, D., Qin, X., & Geedipally, S. R. (2021). Models for spatial data. In Highway Safety Analytics and Modeling (pp. 299–334). Elsevier. https://doi.org/10.1016/B978-0-12-816818-9.00009-3

Naseri, B. (2022). Advanced epidemiology of wheat stem rust: disease occurrence and progression. All Life, 15(1), 1065–1074. https://doi.org/10.1080/26895293.2022.2126899

Naseri, B., & Nazer Kakhki, S. H. (2022). Predicting common bean (Phaseolus vulgaris) productivity according to Rhizoctonia root and stem rot and weed development at field plot scale. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1038538

Ozyilmaz, U. (2020). Evaluation of the effectiveness of antagonistic bacteria against Phytophthora blight disease in pepper with artificial intelligence. Biological Control, 151(June), 104379. https://doi.org/10.1016/j.biocontrol.2020.104379

Pangga, I. B., Macasero, J. B. M., & Villa, J. E. (2023). Epidemiology of fungal plant diseases in the Philippines. In Mycology in the Tropics (pp. 189–212). Elsevier. https://doi.org/10.1016/B978-0-323-99489-7.00007-X

Rai, G. S., & Guest, D. . I. (2020). Drainage, animal manures and fungicides reduce Phytophthora wilt (caused by Phytophthora capsici) of chilli (Capsicum annuum L.) in Bhutan. Australasian Plant Pathol, 50, 169–177. https://doi.org/10.1007/s13313-020-00755-z

Retes-Manjarrez, J. E., Rubio-Aragón, W. A., Márques-Zequera, I., Cruz-Lachica, I., García-Estrada, R. S., & Sy, O. (2020). Novel sources of resistance to Phytophthora capsici on pepper (Capsicum sp.) landraces from Mexico. The Plant Pathology Journal, 36(6), 600–607. https://doi.org/10.5423/PPJ.OA.07.2020.0131

Saltos, L. A., Corozo-Quiñones, L., Pacheco-Coello, R., Santos-Ordóñez, E., Monteros-Altamirano, Á., & Garcés-Fiallos, F. R. (2021). Tissue specific colonization of Phytophthora capsici in Capsicum spp.: molecular insights over plant-pathogen interaction. Phytoparasitica, 49(1), 113–122. https://doi.org/10.1007/s12600-020-00864-x

Serrano-Pérez, P., Palo, C., & Rodríguez-Molina, M. del C. (2017). Efficacy of Brassica carinata pellets to inhibit mycelial growth and chlamydospores germination of Phytophthora nicotianae at different temperature regimes. Scientia Horticulturae, 216, 126–133. https://doi.org/10.1016/j.scienta.2017.01.002

Servicio Nacional de Meteorología e Hidrología del Perú (Senamhi). (2023). Datos hidrometeorológicos. https://www.senamhi.gob.pe/?p=estaciones

Silva, G. T. M. de A., Oliveira, F. I. C. de, Carvalho, A. V. F., André, T. P. P., Silva, C. de F. B. da, & Aragão, F. A. S. de. (2020). Method for evaluating rhizoctonia resistance in melon germplasm. Revista Ciência Agronômica. https://doi.org/10.5935/1806-6690.20200076

Singh, R., Kumar, M., Mamta, D., & Baloda, S. (2019). Development of growth model for Ber powdery mildew in relation to weather parameters. Indian Phytopathology, 72(2), 235–241. https://doi.org/10.1007/s42360-019-00124-x

Sosa-Herrera, J. A., Vallejo-Pérez, M. R., Álvarez-Jarquín, N., Cid-García, N. M., & López-Araujo, D. J. (2019). Geographic Object-Based Analysis of Airborne Multispectral Images for Health Assessment of Capsicum annuum L. Crops. Sensors, 19(21), 4817. https://doi.org/10.3390/s19214817

Ulacio-Osorio, D., Jiménez-Tamayo, M., & Perdomo, W. (2012). Dinámica espacio-temporal en el patosistema pudrición blanca-ajo en Carache, Trujillo, Venezuela. Bioagro, 24(3), 205–212.

Vahamidis, P., Stefopoulou, A., Lagogianni, C. S., Economou, G., Dercas, N., Kotoulas, V., Kalivas, D., & Tsitsigiannis, D. I. (2020). Pyrenophora teres and Rhynchosporium secalis Establishment in a Mediterranean Malt Barley Field: Assessing Spatial, Temporal and Management Effects. Agriculture, 10(11), 553. https://doi.org/10.3390/agriculture10110553

Villarino, M., Larena, I., Melgarejo, P., & De Cal, A. (2021). Effect of chemical alternatives to methyl bromide on soil-borne disease incidence and fungal populations in Spanish strawberry nurseries: A long-term study. Pest Management Science, 77(2), 766–774. https://doi.org/10.1002/ps.6077

Xu, R., Wu, J., Han, X., Wang, Z., Lou, Y., et al. (2024). Discovery of natural rosin-based preservative candidates to control Phytophthora capsici for postharvest disease management of solanaceae vegetables. Postharvest Biology and Technology, 218, 113133.

Downloads

Published

2024-10-22

How to Cite

Toledo, A. ., Aragón, L. ., & Casas, A. . (2024). Space-time analysis, severity of the wilt disease in escabeche pepper (Capsicum baccatum var. Pendulum) and identification of the causal agent (Phytophthora capsici L.) under subtropical climate conditions in Peru. Scientia Agropecuaria, 15(4), 557-567. https://doi.org/10.17268/sci.agropecu.2024.041

Issue

Section

Original Articles