Fusarium spp. in corn crops: Identification, geographic distribution, symptoms, mycotoxins, disease cycle, control, and current and future challenges

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2024.040

Keywords:

corn ear rot, Fusarium, corn, mycotoxins

Abstract

Corn ear rot caused by species of the Fusarium genus is one of the many problems faced by producers worldwide due to its wide geographical distribution, leading to various diseases such as stalk, root, and ear rot. The identification of the pathogen can be carried out through morphological and molecular techniques, with the latter being necessary for species-level identification. Additionally, the pathogen can produce mycotoxins such as Deoxynivalenol (DON), Zearalenone (ZEA), and Fumonisins (FB), which contaminate the grain, posing a risk to both human and animal health. It has been reported that the pathogen can survive in crop residues, entering the plant through the roots, often via wounds caused by insects or agricultural practices. Once inside the roots, the phytopathogen colonizes the xylem vessels and is transported through the plant's vascular system, spreading systemically within the plant, colonizing the stalk and other vascular tissues, and eventually reaching the ear. The introduction of resistant cultivars, crop residue management, irrigation, and biological control of diseases are key strategies in agricultural practices to reduce the incidence and spread of diseases caused by Fusarium. However, current and future challenges include the increasing resistance of strains, distribution, and methods for pathogen identification.

References

Abdel-Wahhab, M. A., & El-Nekeety, A. A. (2021). Mycotoxin deoxynivalenol and oxidative stress: Role of silymarin and inulin protection. Toxicology, 457–467. https://doi.org/10.1016/B978-0-12-819092-0.00045-5

Abdul, N. S., & Marnewick, J. L. (2023). Fumonisin B1 disrupts mitochondrial function in oxidatively poised HepG2 liver cells by disrupting oxidative phosphorylation complexes and potential participation of lincRNA-p21. Toxicon, 225, 107057. https://doi.org/https://doi.org/10.1016/j.toxicon.2023.107057

Afolabi, C. G., Ojiambo, P. S., Ekpo, E. J. A., Menkir, A., & Bandyopadhyay, R. (2007). Evaluation of Maize Inbred Lines for Resistance to Fusarium Ear Rot and Fumonisin Accumulation in Grain in Tropical Africa. Plant Disease, 91(3), 279–286. https://doi.org/10.1094/PDIS-91-3-0279

Agrios, G. N. (2005). Plant pathology (A. Press (ed.)).

Al-Hatmi, A.M.S.; Sandoval-Denis, M.; Nabet, C.; Ahmed, S.A.; Demar, M.; Normand, A.-C.; de Hoog, G. S. (2019). Fusarium volatile, a new potential pathogen from a human respiratory sample A.M.S. Fungal Systematics and Evolution, 4(september), 119–129.

André, A., Hecht, K., Mischler, S., Stäheli, L., Kerhanaj, F., Buller, R., Kinner, M., Freimüller Leischtfeld, S., Chetschik, I., Miescher Schwenninger, S., & Müller, N. (2024). A new physical and biological strategy to reduce the content of zearalenone in infected wheat kernels: the effect of cold needle perforation, microorganisms, and purified enzyme. Food Research International, 186, 114364. https://doi.org/https://doi.org/10.1016/j.foodres.2024.114364

Aoki, T., O’Donnell, K., & Geiser, D. M. (2014). Systematics of key phytopathogenic Fusarium species: Current status and future challenges. Journal of General Plant Pathology, 80(3), 189–201. https://doi.org/10.1007/s10327-014-0509-3

Arata, A. F., Martínez, M., Castellari, C., Cristos, D., Pesquero, N. V, & Dinolfo, M. I. (2024). Impact of Fusarium spp. on different maize commercial hybrids: disease evaluation and mycotoxin contamination. Fungal Biology, 128(6), 1983–1991. https://doi.org/https://doi.org/10.1016/j.funbio.2024.07.008

Arata, A. F., Martínez, M., Pesquero, N. V, Cristos, D., & Dinolfo, M. I. (2024). Contamination of Fusarium spp. and mycotoxins at different ear physiological stages of maize in Argentina. International Journal of Food Microbiology, 410, 110493. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2023.110493

Aziz, N. H., El-Far, F. M., Shahin, A. A. M., & Roushy, S. M. (2007). Control of Fusarium moulds and fumonisin B1 in seeds by gamma-irradiation. Food Control, 18(11), 1337–1342. https://doi.org/https://doi.org/10.1016/j.foodcont.2005.12.013

Babu, A., Pandey, A. K., Deka, B., Kumhar, K. C., Sarkar, S., Bordoloi, M., & Mani, S. (2022). Molecular characterization and functional properties of deep-soil-inhabiting actinobacteria for combating Fusarium dieback disease in tea crop. Biological Control, 174, 105027. https://doi.org/10.1016/J.BIOCONTROL.2022.105027

Backhouse, D., & Burgess, L. W. (2002). Climatic analysis of the distribution of Fusarium graminearum, F. pseudograminearum and F. culmorum on cereals in Australia. Australasian Plant Pathology, 31(4), 321–327. https://doi.org/10.1071/AP02026

Barro, J. P., Santana, F. M., Tibola, C. S., Machado, F. J., Schipanski, C. A., Chagas, D. F., Guterres, C. W., Casarotto, G., Capitanio, C. G., Dallagnol, L. J., Kuhnem, P., Feksa, H. R., Venancio, W. S., & Del Ponte, E. M. (2023). Comparison of single- or multi-active ingredient fungicides for controlling Fusarium head blight and deoxynivalenol in Brazilian wheat. Crop Protection, 174, 106402. https://doi.org/https://doi.org/10.1016/j.cropro.2023.106402

Bennett, J. S., Isakeit, T., Borrego, E. J., Odvody, G., Murray, S., & Kolomiets, M. V. (2023). Identification of naturally occurring atoxigenic strains of Fusarium verticillioides and their potential as biocontrol agents of mycotoxins and ear rot pathogens of maize. Crop Protection, 167, 106197. https://doi.org/10.1016/J.CROPRO.2023.106197

Bianchini, A., & Bullerman, L. B. (2014). MYCOTOXINS | Classification. Encyclopedia of Food Microbiology: Second Edition, 854–861. https://doi.org/10.1016/B978-0-12-384730-0.00230-5

Blacutt, A. A., Gold, S. E., Voss, K. A., Gao, M., & Glenn, A. E. (2018). Fusarium verticillioides: Advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathology, 108(3), 312–326. https://doi.org/10.1094/PHYTO-06-17-0203-RVW

Bocianowski, J. (2024). Using NGS Technology and Association Mapping to Identify Candidate Genes Associated with Fusarium Stalk Rot Resistance. Genes, 15(1). https://doi.org/10.3390/genes15010106

Boutigny, A.-L., Ward, T. J., Van Coller, G. J., Flett, B., Lamprecht, S. C., O’Donnell, K., & Viljoen, A. (2011). Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genetics and Biology, 48(9), 914–920. https://doi.org/https://doi.org/10.1016/j.fgb.2011.05.005

Boutigny, A. L., Gautier, A., Basler, R., Dauthieux, F., Leite, S., Valade, R., Aguayo, J., Ioos, R., & Laval, V. (2019). Metabarcoding targeting the EF1 alpha region to assess fusarium diversity on cereals. PLoS ONE, 14(1), 1–19. https://doi.org/10.1371/journal.pone.0207988

Brauer, E. K., Subramaniam, R., & Harris, L. J. (2020). Regulation and dynamics of gene expression during the life cycle of fusarium graminearum. Phytopathology, 110(8), 1368–1374. https://doi.org/10.1094/PHYTO-03-20-0080-IA

Breunig, M., & Chilvers, M. I. (2021). Baseline sensitivity of Fusarium graminearum from wheat , corn , dry bean and soybean to pydiflumetofen in Michigan , USA. Crop Protection, 140(June 2020), 105419. https://doi.org/10.1016/j.cropro.2020.105419

Brito, V. D., Achimón, F., Zunino, M. P., & Pizzolitto, R. P. (2024). Control of Fusarium verticillioides in maize stored in silo bags with 1-octyn-3-ol. Journal of Stored Products Research, 106, 102279. https://doi.org/https://doi.org/10.1016/j.jspr.2024.102279

Broders, K. D., Lipps, P. E., Paul, P. A., & Dorrance, A. E. (2007). Evaluation of Fusarium graminearum Associated with Corn and Soybean Seed and Seedling Disease in Ohio. Plant Disease, 91(9), 1155–1160. https://doi.org/10.1094/PDIS-91-9-1155

Cai, P., Liu, S., Tu, Y., & Shan, T. (2024). Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. Science of The Total Environment, 911, 168648. https://doi.org/10.1016/J.SCITOTENV.2023.168648

Cao, Y. Y., Zhang, J., Han, S. B., Xia, L. K., Ma, J., Wang, L. F., Li, H. Y., Yang, L. R., Sun, S. L., Zhu, Z. D., & Duan, C. X. (2021). First Report of Maize Stalk Rot Caused by Fusarium kyushuense in China. Plant Disease, 105(11), 3759. https://doi.org/10.1094/PDIS-11-20-2342-PDN

Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553–556. https://doi.org/10.1080/00275514.1999.12061051

Carvajal, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. Journal of Cereal Science, 103, 103293. https://doi.org/10.1016/j.jcs.2021.103293

Chen, A. hai, Islam, T., & Ma, Z. hua. (2022). An integrated pest management program for managing fusarium head blight disease in cereals. Journal of Integrative Agriculture, 21(12), 3434–3444. https://doi.org/10.1016/J.JIA.2022.08.053

Chen, J., Zhang, X., He, Z., Xiong, D., & Long, M. (2023). Damage on intestinal barrier function and Microbial detoxification of deoxynivalenol: A review1. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2023.11.038

Chen, Y., Huang, T. T., Chen, C. J., Hou, Y. P., Zhang, A. F., Wang, W. X., Gao, T. C., & Zhou, M. G. (2012). Sensitivity of Fusarium verticillioides isolates from rice to a novel cyanoacrylate fungicide. Crop Protection, 39, 106–109. https://doi.org/10.1016/J.CROPRO.2012.03.016

Chen, Y., Wang, W. xiang, Zhang, A. fang, Gu, C. yan, Zhou, M. guo, & Gao, T. chun. (2011). Activity of the Fungicide JS399-19 Against Fusarium Head Blight of Wheat and the Risk of Resistance. Agricultural Sciences in China, 10(12), 1906–1913. https://doi.org/10.1016/S1671-2927(11)60191-0

Coppock, R. W., & Dziwenka, M. M. (2019). Mycotoxins. Biomarkers in Toxicology, 615–626. https://doi.org/10.1016/B978-0-12-814655-2.00036-0

Cotten, T. K., & Munkvold, G. P. (1998). Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in maize stalk residue. Phytopathology, 88(6), 550–555. https://doi.org/10.1094/PHYTO.1998.88.6.550

Covic, N., Terefe, B., & Baye, K. (2018). Maize contribution to food and nutrition security and leveraging opportunities for sustainability, nutrition and health outcomes. In Encyclopedia of Food Security and Sustainability (Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21539-4

Crippin, T., V. Lima, Renaud, J.B. Schaafsma, A. W., & Sumarah, M. W. (2020). Fusarium graminearum populations from maize and wheat in Ontario, Canada. World Mycotoxin Journal, 13 (3), 355–366. https://doi.org/10.3920/WMJ2019.2532

Crous, P. W., Lombard, L., Sandoval-Denis, M., Seifert, K. A., Schroers, H.-J., Chaverri, P., Gené, J., Guarro, J., Hirooka, Y., Bensch, K., Kema, G. H. J., Lamprecht, S. C., Cai, L., Rossman, A. Y., Stadler, M., Summerbell, R. C., Taylor, J. W., Ploch, S., Visagie, C. M., … Thines, M. (2021). Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology, 98, 100116. https://doi.org/10.1016/j.simyco.2021.100116

Crous, P. W., Wingfield, M. J., Lombard, L., Roets, F., Swart, W. J., & Alvarado, P. (2019). Fungal Planet description sheets : 951 – 1041. 223–425.

Cumagun, C. J. R., Garcia, R. E. C., & Pilot, R. (2024). First report of Fusarium meridionale causing ear rot of maize in the Philippines. New Disease Reports, 49(1), 10–12. https://doi.org/10.1002/ndr2.12251

Del Ponte, E. M., Moreira, G. M., Ward, T. J., O’Donnell, K., Nicolli, C. P., Machado, F. J., Duffeck, M. R., Alves, K. S., Tessmann, D. J., Waalwijk, C., van der Lee, T., Zhang, H., Chulze, S. N., Stenglein, S. A., Pan, D., Vero, S., Vaillancourt, L. J., Schmale, D. G., Esker, P. D., … Lee, T. (2022). Fusarium graminearum Species Complex: A Bibliographic Analysis and Web-Accessible Database for Global Mapping of Species and Trichothecene Toxin Chemotypes. Phytopathology, 112(4), 741–751. https://doi.org/10.1094/PHYTO-06-21-0277-RVW

Desjardins, A. E., & Proctor, R. H. (2011). Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biology, 115(1), 38–48. https://doi.org/https://doi.org/10.1016/j.funbio.2010.10.002

Dharanendra Swamy, S., Mahadevakumar, S., Hemareddy, H. B., Amruthesh, K. N., Mamatha, S., Kunjeti, S. G., Swapnil, R., Vasantha Kumar, T., & Lakshmidevi, N. (2020). First report of Fusarium equiseti–the incitant of post flowering stalkrot of maize (Zea mays L.) in India. Crop Protection, 129, 105035. https://doi.org/10.1016/j.cropro.2019.105035

Dinango, V. N., Eke, P., Youmbi, D. Y., Kepngop Kouokap, L. R., Toghueo Kouipou, R. M., Tamghe, G. G., Nguemnang Mabou, L. C., Wakam, L. N., & Boyom, F. F. (2022). Endophytic bacteria derived from the desert-spurge (Euphorbia antiquorum L.) suppress Fusarium verticillioides, the causative agent of maize ear and root rot. Rhizosphere, 23, 100562. https://doi.org/10.1016/J.RHISPH.2022.100562

Ding, Y., Ma, N., Haseeb, H. A., Dai, Z., Zhang, J., & Guo, W. (2024). Genome-wide transcriptome analysis of toxigenic Fusarium verticillioides in response to variation of temperature and water activity on maize kernels. International Journal of Food Microbiology, 410, 110494. https://doi.org/10.1016/J.IJFOODMICRO.2023.110494

Djouina, M., Waxin, C., Caboche, S., Lecointe, K., Steimle, A., Beury, D., Desai, M. S., Hot, D., Dubuquoy, L., Launay, D., Vignal, C., & Body-Malapel, M. (2023). Low dose dietary contamination with deoxynivalenol mycotoxin exacerbates enteritis and colorectal cancer in mice. Science of the Total Environment, 900(June). https://doi.org/10.1016/j.scitotenv.2023.165722

Doohan, F. M., Brennan, J., & Cooke, B. M. (2003). Influence of climatic factors on Fusarium species pathogenic to cereals. European Journal of Plant Pathology, 109(7), 755–768. https://doi.org/10.1023/A:1026090626994

Drakopoulos, D., Luz, C., Torrijos, R., Meca, G., Weber, P., Bänziger, I., Voegele, R. T., Six, J., & Vogelgsang, S. (2019). Use of Botanicals to Suppress Different Stages of the Life Cycle of Fusarium graminearum. Phytopathology, 109(12), 2116–2123. https://doi.org/10.1094/PHYTO-06-19-0205-R

Du, Q., Duan, C. X., Li, S. C., Tang, Z. L., & Luo, J. Y. (2020). First Report of Maize Ear Rot Caused by Fusarium concentricum in China. Plant Disease, 104(5), 1539. https://doi.org/10.1094/PDIS-07-19-1515-PDN

Duan, C. X., Du, Q., Tang, Z. L., Li, S. C., & Wang, B. B. (2019). First Report of Maize Ear Rot Caused by Fusarium sacchari in China. Plant Disease, 103(10), 2674. https://doi.org/10.1094/PDIS-04-19-0829-PDN

Duan, C. X., Wang, B. B., Sun, F. F., Yang, Z. H., Zhu, Z. D., & Wang, X. M. (2020). Occurrence of maize ear rot caused by fusarium fujikuroi in China. Plant Disease, 104(2), 587. https://doi.org/10.1094/PDIS-01-19-0154-PDN

Duan, Y., Lu, F., Zhou, Z., Zhao, H., Zhang, J., Mao, Y., Li, M., Wang, J., & Zhou, M. (2020). Quinone outside inhibitors affect DON biosynthesis, mitochondrial structure and toxisome formation in Fusarium graminearum. Journal of Hazardous Materials, 398, 122908. https://doi.org/10.1016/J.JHAZMAT.2020.122908

Duan, Y., Xiao, X., Li, T., Chen, W., Wang, J., Fraaije, B. A., & Zhou, M. (2018). Impact of epoxiconazole on Fusarium head blight control, grain yield and deoxynivalenol accumulation in wheat. Pesticide Biochemistry and Physiology, 152, 138–147. https://doi.org/10.1016/J.PESTBP.2018.09.012

Duncan, K. E., & Howard, R. J. (2010). Biology of maize kernel infection by Fusarium verticillioides. Molecular Plant-Microbe Interactions, 23(1), 6–16. https://doi.org/10.1094/MPMI-23-1-0006

Ejaz, M. R., Jaoua, S., Ahmadi, M., & Shabani, F. (2023). An examination of how climate change could affect the future spread of Fusarium spp. around the world, using correlative models to model the changes. Environmental Technology and Innovation, 31, 103177. https://doi.org/10.1016/j.eti.2023.103177

Epstein, L., Kaur, S., & Henry, P. M. (2022). The Emergence of Fusarium oxysporum f. sp. apii Race 4 and Fusarium oxysporum f. sp. coriandrii Highlights Major Obstacles Facing Agricultural Production in Coastal California in a Warming Climate: A Case Study. Frontiers in Plant Science, 13(June), 1–11. https://doi.org/10.3389/fpls.2022.921516

Fakhfakh, M. M., Yahyaoui, A., Rezgui, S., Elias, E. M., & Daaloul, A. (2011). Identification and pathogenicity assessment of Fusarium spp. sampled from durum wheat fields in Tunisia. African Journal of Biotechnology, 10(34), 6529–6539. https://doi.org/10.5897/AJB10.2453

Fallahi, M., Somma, S., Javan-Nikkhah, M., Saremi, H., Stea, G., Masiello, M., Logrieco, A. F., & Moretti, A. (2021). Genetic structure of Fusarium verticillioides populations from maize in Iran. Fungal Genetics and Biology, 156(July), 103613. https://doi.org/10.1016/j.fgb.2021.103613

FAOSTAT (Bases de datos y conjuntos de datos estadísticos de la Organización de las Naciones Unidas para la Agricultura y la Alimentación). (2024). Cultivos y productos de ganadería.

Fernando, W. G. D., Oghenekaro, A. O., Tucker, J. R., & Badea, A. (2021). Building on a foundation: advances in epidemiology, resistance breeding, and forecasting research for reducing the impact of fusarium head blight in wheat and barley. Canadian Journal of Plant Pathology, 43(4), 495–526. https://doi.org/10.1080/07060661.2020.1861102

Ferrigo, D., Mondin, M., Ladurner, E., Fiorentini, F., Causin, R., & Raiola, A. (2020). Effect of seed biopriming with Trichoderma harzianum strain INAT11 on Fusarium ear rot and Gibberella ear rot diseases. Biological Control, 147(January), 104286. https://doi.org/10.1016/j.biocontrol.2020.104286

Gaige, A. R., Todd, T., & Stack, J. P. (2020). Interspecific Competition for Colonization of Maize Plants between Fusarium proliferatum and Fusarium verticillioides. Plant Disease, 104(8), 2102–2110. https://doi.org/10.1094/PDIS-09-19-1964-RE

Gaikpa, D. S., Kessel, B., Presterl, T., Ouzunova, M., Galiano-Carneiro, A. L., Mayer, M., Melchinger, A. E., Schön, C. C., & Miedaner, T. (2021). Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. Theoretical and Applied Genetics, 134(3), 793–805. https://doi.org/10.1007/s00122-020-03731-9

Galletti, S., Paris, R., & Cianchetta, S. (2020). Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge. Microbiological Research, 233(December 2019), 126406. https://doi.org/10.1016/j.micres.2019.126406

García, S., & Serna, S. (2019). Corn history and culture. Corn: Chemistry and Technology, 3rd Edition, 1–18. https://doi.org/10.1016/B978-0-12-811971-6.00001-2

Gelderblom, W. C. A., Abel, S., Smuts, C. M., Marnewick, J., Marasas, W. F. O., Lemmer, E. R., & Ramljak, D. (2001). Fumonisin-Induced Hepatocarcinogenesis : Mechanisms Related to Cancer Initiation and Promotion. 109(April 2000), 291–300.

Guo, Y., Tang, Y., Zhang, L., Liu, Y., Ma, Q., & Zhao, L. (2024). Enzymatic characterization and application of soybean hull peroxidase as an efficient and renewable biocatalyst for degradation of zearalenone. International Journal of Biological Macromolecules, 260, 129664. https://doi.org/10.1016/J.IJBIOMAC.2024.129664

Gupta, R. C., Doss, R. B., Lall, R., Srivastava, A., & Sinha, A. (2022). Trichothecenes and zearalenone. Reproductive and Developmental Toxicology, 1003–1016. https://doi.org/10.1016/B978-0-323-89773-0.00049-7

Han, S. B., Cao, Y. Y., Zhang, J., Wang, J., Zhang, L. L., Chen, Y. H., Ku, L. X., & Duan, C. X. (2021). First Report of Fusarium cf. longipes Associated with Maize Stalk Rot in China. Plant Disease, 106(3), 1064. https://doi.org/10.1094/PDIS-06-21-1149-PDN

Han, S. L., Wang, M. M., Ma, Z. Y., Raza, M., Zhao, P., Liang, J. M., Gao, M., Li, Y. J., Wang, J. W., Hu, D. M., & Cai, L. (2023). Fusarium diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. Studies in Mycology, 104, 87–148. https://doi.org/10.3114/sim.2022.104.02

Hao, J. J., Xie, S. N., Sun, J., Yang, G. Q., Liu, J. Z., Xu, F., Ru, Y. Y., & Song, Y. L. (2017). Analysis of fusarium graminearum species complex from wheat–maize rotation regions in henan (China). Plant Disease, 101(5), 720–725. https://doi.org/10.1094/PDIS-06-16-0912-RE

Harish, J., Jambhulkar, P. P., Bajpai, R., Arya, M., Babele, P. K., Chaturvedi, S. K., Kumar, A., & Lakshman, D. K. (2023). Morphological characterization, pathogenicity screening, and molecular identification of Fusarium spp. isolates causing post-flowering stalk rot in maize. Frontiers in Microbiology, 14(March), 1–16. https://doi.org/10.3389/fmicb.2023.1121781

He, J., Li, D. W., Cui, W. L., Zhu, L. H., & Huang, L. (2024). Morphological and phylogenetic analyses reveal three new species of Fusarium (Hypocreales, Nectriaceae) associated with leaf blight on Cunninghamia lanceolata in China. MycoKeys, 101, 45–80. https://doi.org/10.3897/mycokeys.101.113128

Hou, Y. P., Mao, X. W., Wang, J. X., Zhan, S. W., & Zhou, M. G. (2017). Sensitivity of Fusarium asiaticum to a novel succinate dehydrogenase inhibitor fungicide pydiflumetofen. Crop Protection, 96, 237–244. https://doi.org/10.1016/J.CROPRO.2017.02.011

Hsuan, H. M., Salleh, B., & Zakaria, L. (2011). Molecular identificationn of Fusarium species in gibberella fujikuroi species complex from rice, sugarcane and maize from Peninsular Malaysia. International Journal of Molecular Sciences, 12(10), 6722–6732. https://doi.org/10.3390/ijms12106722

Zhang, Y. Y. Cao, S. B. Han, L. K. Xia, Z. D. Zhu, C. X. Duan, M. N. Zhang, L. R. Yang, and H. Y. LiJ. Zhang, Y. Y. Cao, S. B. Han, L. K. Xia, Z. D. Zhu, C. X. Duan, M. N. Zhang, L. R. Yang, and H. Y. L. (2021). First Report of Fusarium thapsinum Causing Maize Stalk Rot in China. Plant Disease, 106(6), 1–2. https://doi.org/10.1094/PDIS-11-20-2469-PDN

Jabłońska, E., Piątek, K., Wit, M., Mirzwa-Mróz, E., & Wakuliński, W. (2020). Molecular diversity of the Fusarium fujikuroi species complex from maize. European Journal of Plant Pathology, 158(4), 859–877. https://doi.org/10.1007/s10658-020-02121-7

Jiang, B., Wang, D., Zhou, J., Cai, J., Jiang, J., Wang, L., & Li, Y. (2022). First Report of Corn Ear Rot Caused by Fusarium asiaticum in China. Plant Disease, 107(4), 1243. https://doi.org/10.1094/PDIS-08-22-1934-PDN

Jiang, H., Ma, L. G., Qi, K., Zhang, Y. L., Zhang, B., Ma, G. P., & Qi, J. S. (2022). First Report of Maize Seedling Blight Caused by Fusarium pseudograminearum in China. Plant Disease, 106(9), 2519. https://doi.org/10.1094/PDIS-01-22-0099-PDN

Jiang, J., Zhou, X., Chen, H., Wang, X., Ruan, Y., Liu, X., & Ma, J. (2024). 18β-Glycyrrhetinic acid protects against deoxynivalenol-induced liver injury via modulating ferritinophagy and mitochondrial quality control. Journal of Hazardous Materials, 471, 134319. https://doi.org/https://doi.org/10.1016/j.jhazmat.2024.134319

Jiang, W., Han, W., Wang, R., Li, Y., Hu, G., Yang, J., Jiang, D., Han, W., Wang, M., & Li, G. (2020). Development of an Inoculation Technique for Rapidly Evaluating Maize Inbred Lines for Resistance to Stalk Rot caused by Fusarium spp. in the Field. Plant Disease, 105(9), 2306–2313. https://doi.org/10.1094/PDIS-09-20-2016-SR

Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286

Khan, R. B., Phulukdaree, A., & Chuturgoon, A. A. (2018). Fumonisin B1 induces oxidative stress in oesophageal (SNO) cancer cells. Toxicon, 141, 104–111. https://doi.org/https://doi.org/10.1016/j.toxicon.2017.12.041

Krnjaja, V., Mandić, V., Bijelić, Z., Stanković, S., Obradović, A., Caro Petrović, V., & Gogić, M. (2022). Influence of Sowing Time on Fusarium and Fumonisin Contamination of Maize Grains and Yield Component Traits. Agriculture (Switzerland), 12(7), 1–11. https://doi.org/10.3390/agriculture12071042

Kuhnem, P. R., Del Ponte, E. M., Dong, Y., & Bergstrom, G. C. (2015). Fusarium graminearum isolates from wheat and maize in New York show similar range of aggressiveness and toxigenicity in cross-species pathogenicity tests. Phytopathology, 105(4), 441–448. https://doi.org/10.1094/PHYTO-07-14-0208-R

Kuhnem, P. R., Ward, T. J., Silva, C. N., Spolti, P., Ciliato, M. L., Tessmann, D. J., & Del Ponte, E. M. (2016). Composition and toxigenic potential of the Fusarium graminearum species complex from maize ears, stalks and stubble in Brazil. Plant Pathology, 65(7), 1185–1191. https://doi.org/10.1111/ppa.12497

Lamprecht, S. C., Tewoldemedhin, Y. T., Botha, W. J., & Calitz, F. J. (2011). Fusarium graminearum Species Complex Associated with Maize Crowns and Roots in the KwaZulu-Natal Province of South Africa. Plant Disease, 95(9), 1153–1158. https://doi.org/10.1094/PDIS-02-11-0083

Lanubile, A., Maschietto, V., Borrelli, V. M., Stagnati, L., Logrieco, A. F., & Marocco, A. (2017). Molecular Basis of Resistance to Fusarium Ear Rot in Maize. 8(October), 1–13. https://doi.org/10.3389/fpls.2017.01774

Lee, T., Paek, J. S., Lee, K. A., Lee, S., Choi, J. H., Ham, H., Hong, S. K., & Ryu, J. G. (2016). Occurrence of toxigenic fusarium vorosii among small grain cereals in Korea. Plant Pathology Journal, 32(5), 407–413. https://doi.org/10.5423/PPJ.OA.05.2016.0123

Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual. In The Fusarium Laboratory Manual. https://doi.org/10.1002/9780470278376

Li, X., Wang, Z., & Yang, B. (2024). Identification of the hub genes linked to zearalenone-induced hepatotoxicity in broiler chickens. Environmental Research, 246, 118094. https://doi.org/10.1016/J.ENVRES.2023.118094

Link, H. F. (1809). Observationes in ordines plantarum naturales. Dissertatio 1 Ma, 3, 1–42.

Liu, Y. J., Whelen, S., & Hall, B. D. (1999). Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Molecular Biology and Evolution, 16(12), 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

Liu, Y., Xu, L., Shi, Z., Wang, R., Liu, Y., Gong, Y., Tian, Y., Kang, X., Sun, X., & Wang, Y. (2023). Identification of an Acinetobacter pittii acyltransferase involved in transformation of deoxynivalenol to 3-acetyl-deoxynivalenol by transcriptomic analysis. Ecotoxicology and Environmental Safety, 263(April), 115395. https://doi.org/10.1016/j.ecoenv.2023.115395

Lombard, L., Sandoval-Denis, M., Lamprecht, S. C., & Crous, P. W. (2019). Epitypification of Fusarium oxysporum – Clearing the taxonomic chaos. Persoonia: Molecular Phylogeny and Evolution of Fungi, 43, 1–47. https://doi.org/10.3767/persoonia.2019.43.01

Lombard, L., Van Doorn, R., & Crous, P. W. (2019). Neotypification of Fusarium chlamydosporum - A reappraisal of a clinically important species complex. Fungal Systematics and Evolution, 4(December), 183–200. https://doi.org/10.3114/fuse.2019.04.10

Lombard, L., van Doorn, R., Groenewald, J. Z., Tessema, T., Kuramae, E. E., Etolo, D. W., Raaijmakers, J. M., & Crous, P. W. (2022). Fusarium diversity associated with the Sorghum-Striga interaction in Ethiopia. Fungal Systematics and Evolution, 10(December), 177–215. https://doi.org/10.3114/fuse.2022.10.08

Ma, L., Does, H. C. Van Der, Borkovich, K. A., Coleman, J. J., Pietro, A. Di, Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Antoniw, J., Baker, S. E., Bluhm, B. H., Breakspear, A., Brown, D. W., Butchko, R. A. E., Chapman, S., Coulson, R., Coutinho, P. M., Danchin, E. G. J., … Rep, M. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. 464(March). https://doi.org/10.1038/nature08850

Ma, P., Li, H., Liu, E., He, K., Song, Y., Dong, C., Wang, Z., Zhang, X., Zhou, Z., Xu, Y., Wu, J., & Zhang, H. (2022). Evaluation and Identification of Resistance Lines and QTLs of Maize to Seedborne Fusarium verticillioides. Plant Disease, 106(8), 2066–2073. https://doi.org/10.1094/PDIS-10-21-2247-RE

Machado, F. J., de Barros, A. V., McMaster, N., Schmale, D. G., Vaillancourt, L. J., & Del Ponte, E. M. (2022). Aggressiveness and Mycotoxin Production by Fusarium meridionale Compared with F. graminearum on Maize Ears and Stalks in the Field. Phytopathology, 112(2), 271–277. https://doi.org/10.1094/PHYTO-04-21-0149-R

Machado, J. da C., Machado, A. Q., Pozza, E. A., Machado, C. F., & Zancan, W. L. A. (2013). Inoculum potential of Fusarium verticillioides and performance of maize seeds. Tropical Plant Pathology, 38(3), 213–217. https://doi.org/10.1590/S1982-56762013000300005

Maschietto, V., Colombi, C., Pirona, R., Pea, G., Strozzi, F., Marocco, A., Rossini, L., & Lanubile, A. (2017). QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biology, 17(1), 1–21. https://doi.org/10.1186/s12870-017-0970-1

Massarolo, K. C., Ferreira, C. F. J., Collazzo, C. C., Bianchini, A., Kupski, L., & Badiale-Furlong, E. (2020). Resistant starch and hydrothermal treatment of cornmeal: Factors in aflatoxins and fumonisin B1 reduction and bioaccessibility. Food Control, 114, 107274. https://doi.org/https://doi.org/10.1016/j.foodcont.2020.107274

Matumba, L., Van Poucke, C., Njumbe Ediage, E., Jacobs, B., & De Saeger, S. (2015). Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize. Food Additives & Contaminants: Part A, 32(6), 960–969. https://doi.org/10.1080/19440049.2015.1029535

McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & Van Sanford, D. (2012). Fusarium Head Blight Disease Cycle , Symptoms , and Impact on Grain Yield and Quality Frequency and Magnitude of Epidemics Since 1997. Plant Disease, 96(12), 1712–1728.

Mesterházy, Á., Lemmens, M., & Reid, L. M. (2012). Breeding for resistance to ear rots caused by Fusarium spp. in maize - A review. Plant Breeding, 131(1), 1–19. https://doi.org/10.1111/j.1439-0523.2011.01936.x

Mesterhazy, A., Szieberth, D., Toldine, E. T., Nagy, Z., Szabó, B., Herczig, B., Bors, I., & Tóth, B. (2022). Updating the Methodology of Identifying Maize Hybrids Resistant to Ear Rot Pathogens and Their Toxins—Artificial Inoculation Tests for Kernel Resistance to Fusarium graminearum, F. verticillioides and Aspergillus flavus. Journal of Fungi, 8(3), 1–31. https://doi.org/10.3390/jof8030293

Mezzalama, M., Guarnaccia, V., Martino, I., Tabone, G., & Gullino, M. L. (2021). First Report of Fusarium commune Causing Root and Crown Rot on Maize in Italy. Plant Disease, 105(12), 4156. https://doi.org/10.1094/PDIS-01-21-0075-PDN

Miao, J., Li, Y., Hu, S., Li, G., Gao, X., Dai, T., & Liu, X. (2024). Resistance risk, resistance mechanism and the effect on DON production of a new SDHI fungicide cyclobutrifluram in Fusarium graminearum. Pesticide Biochemistry and Physiology, 105795. https://doi.org/10.1016/J.PESTBP.2024.105795

Miedaner, T., Boeven, A. L. G. C., Gaikpa, D. S., Kistner, M. B., & Grote, C. P. (2020). Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize. International Journal of Molecular Sciences, 21(24), 1–22. https://doi.org/10.3390/ijms21249717

Mohd Zainudin, N. A. I., Hamzah, F. A., Kusai, N. A., Zambri, N. S., & Salleh, S. (2017). Characterization and pathogenicity of Fusarium proliferatum and Fusarium verticillioides, causal agents of fusarium ear rot of corn. Turkish Journal of Biology, 41(1), 220–230. https://doi.org/10.3906/biy-1606-25

Molina-Molina, J.-M., Real, M., Jimenez-Diaz, I., Belhassen, H., Hedhili, A., Torné, P., Fernández, M. F., & Olea, N. (2014). Assessment of estrogenic and anti-androgenic activities of the mycotoxin zearalenone and its metabolites using in vitro receptor-specific bioassays. Food and Chemical Toxicology, 74, 233–239. https://doi.org/https://doi.org/10.1016/j.fct.2014.10.008

Moonjely, S., Ebert, M., Paton-Glassbrook, D., Noel, Z. A., Roze, L., Shay, R., Watkins, T., & Trail, F. (2023). Update on the state of research to manage Fusarium head blight. Fungal Genetics and Biology, 169(May), 103829. https://doi.org/10.1016/j.fgb.2023.103829

Munkvold, G. P., McGee, D. C., & Carlton, W. M. (1997). Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology, 87(2), 209–217. https://doi.org/10.1094/PHYTO.1997.87.2.209

Nguyen, T. T. X., Dehne, H. W., & Steiner, U. (2016a). Histopathological assessment of the infection of maize leaves by Fusarium graminearum, F. proliferatum, and F. verticillioides. Fungal Biology, 120(9), 1094–1104. https://doi.org/10.1016/J.FUNBIO.2016.05.013

Nguyen, T. T. X., Dehne, H. W., & Steiner, U. (2016b). Maize leaf trichomes represent an entry point of infection for Fusarium species. Fungal Biology, 120(8), 895–903. https://doi.org/10.1016/J.FUNBIO.2016.05.014

Nilsson, R. H., Tedersoo, L., Abarenkov, K., Ryberg, M., Kristiansson, E., Hartmann, M., Schoch, C. L., Nylander, J. A. A., Bergsten, J., Porter, T. M., Jumpponen, A., Vaishampayan, P., Ovaskainen, O., Hallenberg, N., Bengtsson-Palme, J., Eriksson, K. M., Larsson, K.-H., Larsson, E., & Kõljalg, U. (2012). Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys, 4, 37–63. https://doi.org/10.3897/mycokeys.4.3606

O’Donnell, K., Kistler, H. C., Tacke, B. K., & Casper, H. H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 7905–7910. https://doi.org/10.1073/pnas.130193297

O’Donnell, K., Kistlerr, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2044–2049. https://doi.org/10.1073/pnas.95.5.2044

O’Donnell, K., Nirenberg, H. I., Aoki, T., & Cigelnik, E. (2000). A multigene phylogeny of the Gibberella fujikuroi species complex. Mycoscience, 41, 61–78.

O’Donnell, K., Sutton, D. A., Rinaldi, M. G., Sarver, B. A. J., Balajee, S. A., Schroers, H. J., Summerbell, R. C., Robert, V. A. R. G., Crous, P. W., Zhang, N., Aoki, T., Jung, K., Park, J., Lee, Y. H., Kang, S., Park, B., & Geiser, D. M. (2010). Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. Journal of Clinical Microbiology, 48(10), 3708–3718. https://doi.org/10.1128/JCM.00989-10

Odjo, S., Alakonya, A. E., Rosales-Nolasco, A., Molina, A. L., Muñoz, C., & Palacios-Rojas, N. (2022). Occurrence and postharvest strategies to help mitigate aflatoxins and fumonisins in maize and their co-exposure to consumers in Mexico and Central America. Food Control, 138, 108968. https://doi.org/10.1016/J.FOODCONT.2022.108968

Okello, P. N., Petrović, K., Kontz, B., & Mathew, F. M. (2019). Eight Species of Fusarium Cause Root Rot of Corn (Zea mays) in South Dakota. Plant Health Progress, 20(1), 38–43. https://doi.org/10.1094/PHP-11-18-0075-RS

Oladele, J. O., Wang, M., Rivenbark, K. J., & Phillips, T. D. (2024). Application and efficacy of beidellite clay for the adsorption and detoxification of deoxynivalenol (vomitoxin). Emerging Contaminants, 10(4), 100390. https://doi.org/https://doi.org/10.1016/j.emcon.2024.100390

Oldenburg, E., Höppner, F., Ellner, F., & Weinert, J. (2017). Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Research, 33(3), 167–182. https://doi.org/10.1007/s12550-017-0277-y

Olowe, O. M., Olawuyi, O. J., Sobowale, A. A., & Odebode, A. C. (2018). Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L. (Maize). Current Plant Biology, 15(October), 30–37. https://doi.org/10.1016/j.cpb.2018.11.005

Oren, L., Ezrati, S., Cohen, D., & Sharon, A. (2003). Early events in the Fusarium verticillioides-maize interaction characterized by using a green fluorescent protein-expressing transgenic isolate. Applied and Environmental Microbiology, 69(3), 1695–1701. https://doi.org/10.1128/AEM.69.3.1695-1701.2003

Otegui, M. E., Cirilo, A. G., Uhart, S. A., & Andrade, F. H. (2021). Maize. Crop Physiology Case Histories for Major Crops, 2–43. https://doi.org/10.1016/B978-0-12-819194-1.00001-3

Pfordt, A., Romero, L. R., Schiwek, S., Karlovsky, P., & von Tiedemann, A. (2020). Impact of environmental conditions and agronomic practices on the prevalence of fusarium species associated with ear-and stalk rot in maize. Pathogens, 9(3), 1–17. https://doi.org/10.3390/pathogens9030236

Pierzgalski, A., Bryła, M., Kanabus, J., Modrzewska, M., & Podolska, G. (2021). Updated review of the toxicity of selected Fusarium toxins and their modified forms. Toxins, 13(11). https://doi.org/10.3390/toxins13110768

Poland, J., & Rutkoski, J. (2016). Advances and Challenges in Genomic Selection for Disease Resistance. Annual Review of Phytopathology, 54, 79–98. https://doi.org/10.1146/annurev-phyto-080615-100056

Ponce-García, N., Ortíz-Islas, S., García-Lara, S., & Serna-Saldivar, S. O. (2020). Physical and chemical parameters, Fusarium verticillioides growth and fumonisin production in kernels of nine maize genotypes. Journal of Cereal Science, 96, 103128. https://doi.org/10.1016/J.JCS.2020.103128

Qi, H., Guo, F., Lv, L., Zhu, X., Zhang, L., Yu, J., Wei, X., & Zhang, Z. (2021). The Wheat Wall-Associated Receptor-Like Kinase TaWAK-6D Mediates Broad Resistance to Two Fungal Pathogens Fusarium pseudograminearum and Rhizoctonia cerealis. Frontiers in Plant Science, 12. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.758196

Qin, P. W., Xu, J., Jiang, Y., Hu, L., Van Der Lee, T., Waalwijk, C., Zhang, W. M., & Xu, X. D. (2020). Survey for toxigenic fusarium species on maize kernels in China. World Mycotoxin Journal, 13(2), 213–223. https://doi.org/10.3920/WMJ2019.2516

Qincheng Li, Jie Shi, Chaolong Huang, Jingfei Guo, Kanglai He, Z. W. (2023). Asian Corn Borer (Ostrinia furnacalis) Infestation Increases Fusarium verticillioides Infection and Fumonisin Contamination in Maize and Reduces the Yield. Plant Disease, 107(0191–2917). https://doi.org/https://doi.org/10.1094/PDIS-03-22-0584-RE

Qu, M., Tian, S., Yu, H., Liu, D., Zhang, C., He, Y., & Cheng, F. (2023). Single-kernel classification of deoxynivalenol and zearalenone contaminated maize based on visible light imaging under ultraviolet light excitation combined with polarized light imaging. Food Control, 144, 109354. https://doi.org/10.1016/J.FOODCONT.2022.109354

Quaedvlieg, W., Kema, G. H. J., Groenewald, J. Z., Verkley, G. J. M., Seifbarghi, S., Razavi, M., Mirzadi Gohari, A., Mehrabi, R., & Crous, P. W. (2011). Zymoseptoria gen. nov.: A new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia: Molecular Phylogeny and Evolution of Fungi, 26, 57–69. https://doi.org/10.3767/003158511X571841

Rampersad, S. N. (2020). Pathogenomics and Management of Fusarium Diseases in Plants. i.

Rauwane, M. E., Ogugua, U. V., Kalu, C. M., Ledwaba, L. K., Woldesemayat, A. A., & Ntushelo, K. (2020). Pathogenicity and virulence factors of Fusarium graminearum including factors discovered using next generation sequencing technologies and proteomics. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020305

Robertson, A. E., Munkvold, G. P., Hurburgh, C. R., & Ensley, S. (2011). Effects of natural hail damage on ear rots, mycotoxins, and grain quality characteristics of corn. Agronomy Journal, 103(1), 193–199. https://doi.org/10.2134/agronj2010.0276

Rose, L. J., Mouton, M., Beukes, I., Flett, B. C., Van Der Vyver, C., & Viljoen, A. (2016). Multi-environment evaluation of maize inbred lines for resistance to fusarium ear rot and fumonisins. Plant Disease, 100(10), 2134–2144. https://doi.org/10.1094/PDIS-11-15-1360-RE

Sabnam, N., Hussain, A., & Saha, P. (2023). The secret password: Cell death-inducing proteins in filamentous phytopathogens - As versatile tools to develop disease-resistant crops. Microbial Pathogenesis, 183, 106276. https://doi.org/https://doi.org/10.1016/j.micpath.2023.106276

Sampietro, D. A., Díaz, C. G., Gonzalez, V., Vattuone, M. A., Ploper, L. D., Catalan, C. A. N., & Ward, T. J. (2011). Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. International Journal of Food Microbiology, 145(1), 359–364. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2010.12.021

Santiago, R., Cao, A., Malvar, R. A., & Butrón, A. (2020). Genomics of maize resistance to fusarium ear rot and fumonisin contamination. Toxins, 12(7), 1–16. https://doi.org/10.3390/toxins12070431

Sarmiento-Villamil, J. L., García-Pedrajas, N. E., Cañizares, M. C., & García-Pedrajas, M. D. (2020). Molecular Mechanisms Controlling the Disease Cycle in the Vascular Pathogen Verticillium dahliae Characterized through Forward Genetics and Transcriptomics. Molecular Plant-Microbe Interactions, 33(6), 825–841. https://doi.org/10.1094/MPMI-08-19-0228-R

Scarpino, V., Reyneri, A., Vanara, F., Scopel, C., Causin, R., & Blandino, M. (2015). Relationship between European Corn Borer injury, Fusarium proliferatum and F. subglutinans infection and moniliformin contamination in maize. Field Crops Research, 183, 69–78. https://doi.org/10.1016/J.FCR.2015.07.014

Seepe, H. A., Raphoko, L., Amoo, S. O., & Nxumalo, W. (2022). Lantadene A and boswellic acid isolated from the leaves of Lantana camara L. have the potential to control phytopathogenic Fusarium species. Heliyon, 8(12), e12216. https://doi.org/10.1016/j.heliyon.2022.e12216

Shala-Mayrhofer, V., Varga, E., Marjakaj, R., Berthiller, F., Musolli, A., Berisha, D., Kelmendi, B., & Lemmens, M. (2013). Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. Food Additives & Contaminants: Part B, 6(4), 237–243. https://doi.org/10.1080/19393210.2013.804885

Shan, L. Y., Cui, W. Y., Zhang, D. D., Zhang, J., Ma, N. N., Bao, Y. M., Dai, X. F., & Guo, W. (2016). First Report of Fusarium brachygibbosum Causing Maize Stalk Rot in China. Plant Disease, 101(5), 837. https://doi.org/10.1094/PDIS-10-16-1465-PDN

Shang, G., Yu, H., Yang, J., Zeng, Z., & Hu, Z. (2020). First Report of Fusarium miscanthi Causing Ear Rot on Maize in China. Plant Disease, 105(5), 1565. https://doi.org/10.1094/PDIS-10-20-2182-PDN

Shao, J., Pei, Z., Jing, H., Wang, L., Jiang, C., Du, X., Jiang, C., Lou, Z., & Wang, H. (2021). Antifungal activity of myriocin against Fusarium graminearum and its inhibitory effect on deoxynivalenol production in wheat grains. Physiological and Molecular Plant Pathology, 114, 101635. https://doi.org/10.1016/J.PMPP.2021.101635

Sharma, P., Thakur, M., Chauhan, A., & Kamal, S. (2024). Identification, classification and chromosomal mapping of Fusarium wilt-related R-genes in mutagenized ginger (Zingiber officinale Rosc.) through comparative transcriptome sequencing. South African Journal of Botany, 170, 23–37. https://doi.org/https://doi.org/10.1016/j.sajb.2024.05.016

Shen, G., Cao, Y., Yin, X., Dong, F., Xu, J., Shi, J., & Lee, Y. W. (2022). Rapid and nondestructive quantification of deoxynivalenol in individual wheat kernels using near-infrared hyperspectral imaging and chemometrics. Food Control, 131, 108420. https://doi.org/10.1016/J.FOODCONT.2021.108420

Silva, J. J., Viaro, H. P., Ferranti, L. S., Oliveira, A. L. M., Ferreira, J. M., Ruas, C. F., Ono, E. Y. S., & Fungaro, M. H. P. (2017). Genetic structure of Fusarium verticillioides populations and occurrence of fumonisins in maize grown in Southern Brazil. Crop Protection, 99, 160–167. https://doi.org/10.1016/j.cropro.2017.05.020

Sobek, E. A., & Munkvold, G. P. (1999). European corn borer (Lepidoptera: Pyralidae) larvae as vectors of Fusarium moniliforme, causing kernel rot and symptomless infection of maize kernels. Journal of Economic Entomology, 92(3), 503–509. https://doi.org/10.1093/jee/92.3.503

Stagnati, L., Lanubile, A., Samayoa, L. F., Bragalanti, M., Giorni, P., Busconi, M., Holland, J. B., & Marocco, A. (2019). A genome wide association study reveals markers and genes associated with resistance to fusarium verticillioides infection of seedlings in a maize diversity panel. G3: Genes, Genomes, Genetics, 9(2), 571–579. https://doi.org/10.1534/g3.118.200916

Stagnati, L., Rahjoo, V., Samayoa, L. F., Holland, J. B., Borrelli, V. M. G., Busconi, M., Lanubile, A., & Marocco, A. (2020). A genome-wide association study to understand the effect of Fusarium verticillioides infection on seedlings of a maize diversity panel. G3: Genes, Genomes, Genetics, 10(4), 1685–1696. https://doi.org/10.1534/g3.119.400987

Streit, E., Schatzmayr, G., Tassis, P., Tzika, E., Marin, D., Taranu, I., Tabuc, C., Nicolau, A., Aprodu, I., Puel, O., & Oswald, I. P. (2012). Current situation of mycotoxin contamination and co-occurrence in animal feed focus on Europe. Toxins, 4(10), 788–809. https://doi.org/10.3390/toxins4100788

Stumpf, R., dos Santos, J., Gomes, L. B., Silva, C. N., Tessmann, D. J., Ferreira, F. D., Machinski, M., & Del Ponte, E. M. (2013). Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons. Brazilian Journal of Microbiology, 44(1), 89–95. https://doi.org/10.1590/S1517-83822013000100012

Summerell, B. A. (2019). Resolving Fusarium: Current Status of the Genus. Annual Review of Phytopathology, 57, 323–339. https://doi.org/10.1146/annurev-phyto-082718-100204

Sun, J., Zhou, Y., Lu, Z., & Lu, Y. (2023). Bacillomycin D with calcium propionate effectively inhibited microbial growth and reduced deoxynivalenol on maize kernels during storage. Journal of Stored Products Research, 101, 102070. https://doi.org/10.1016/J.JSPR.2022.102070

Sun, Y., Wang, K., Yang, B., Yang, J., Liu, B., Chen, X., Liu, W., & Chen, Y. (2024). Anti-fungal activity of a novel succinate dehydrogenase inhibitor pydiflumetofen against Bipolaris maydis. Crop Protection, 178, 106570. https://doi.org/10.1016/J.CROPRO.2023.106570

Sung, G. H., Sung, J. M., Hywel-Jones, N. L., & Spatafora, J. W. (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution, 44(3), 1204–1223. https://doi.org/10.1016/J.YMPEV.2007.03.011

Suriani, Sebayang, A., Mirsam, H., Pakki, S., Azrai, M., & Muis, A. (2021). Control of Fusarium verticillioides on corn with a combination of Bacillus subtilis TM3 formulation and botanical pesticides. Saudi Journal of Biological Sciences, 28(12), 7000–7005. https://doi.org/10.1016/j.sjbs.2021.07.083

Tahat, M. M., Aldakil, H. A., Alananbeh, K. M., & Salem, N. M. (2022). First Report of Fusarium verticillioides Causing Fusarium Ear Rot of Corn in Jordan. Plant Disease, 107(5), 1632. https://doi.org/10.1094/PDIS-08-22-1807-PDN

Teixeira, F. F., & Guimarães, C. T. (2021). Maize Genetic Resources and Pre-Breeding. Wild Germplasm for Genetic Improvement in Crop Plants, 81–99. https://doi.org/10.1016/B978-0-12-822137-2.00005-9

Terna, P. T., Mohamed Nor, N. M. I., Azuddin, N. F., & Zakaria, L. (2024). Molecular identification and pathogenicity of endophytic fungi from corn ears. Scientific Reports, 14(1), 1–14. https://doi.org/10.1038/s41598-024-68428-1

Thiel, P. G., Shephard, G. S., Sydenham, E. W., Marasas, W. F., Nelson, P. E., & Wilson, T. M. (1991). Levels of Fumonisins B 1 and B 2 in Feeds Associated with Confirmed Cases of Equine Leukoencephalomalacia. 109–111.

Tian, Y., Zhang, D., Cai, P., Lin, H., Ying, H., Hu, Q.-N., & Wu, A. (2022). Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives. Trends in Food Science & Technology, 124, 96–107. https://doi.org/https://doi.org/10.1016/j.tifs.2022.04.002

Vandicke, J., De Visschere, K., Croubels, S., De Saeger, S., Audenaert, K., & Haesaert, G. (2019). Mycotoxins in flanders’ fields: Occurrence and correlations with fusarium species in whole-plant harvested maize. Microorganisms, 7(11), 1–21. https://doi.org/10.3390/microorganisms7110571

Varela, C. P., Casal, O. A., Padin, M. C., Martinez, V. F., Oses, M. J. S., Scauflaire, J., Munaut, F., Castro, M. J. B., & Vázquez, J. P. M. (2013). First Report of Fusarium temperatum Causing Seedling Blight and Stalk Rot on Maize in Spain. Plant Disease, 97(9), 1252. https://doi.org/10.1094/PDIS-02-13-0167-PDN

Venturini, G., Babazadeh, L., Casati, P., Pilu, R., Salomoni, D., & Toffolatti, S. L. (2016). Assessing pigmented pericarp of maize kernels as possible source of resistance to fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. International Journal of Food Microbiology, 227, 56–62. https://doi.org/10.1016/J.IJFOODMICRO.2016.03.022

Vicens-Sans, A., Pascari, X., Molino, F., Ramos, A. J., & Marín, S. (2024). Near infrared hyperspectral imaging as a sorting tool for deoxynivalenol reduction in wheat batches. Food Research International, 178(December 2023), 113984. https://doi.org/10.1016/j.foodres.2024.113984

Villani, A., Moretti, A., De Saeger, S., Han, Z., Di Mavungu, J. D., Soares, C. M. G., Proctor, R. H., Venâncio, A., Lima, N., Stea, G., Paciolla, C., Logrieco, A. F., & Susca, A. (2016). A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatum-equiseti species complex. International Journal of Food Microbiology, 234, 24–35. https://doi.org/10.1016/J.IJFOODMICRO.2016.06.023

Voss, K. A., Riley, R. T., Norred, W. P., Bacon, C. W., Meredith, F. I., Howard, P. C., Plattner, R. D., Collins, T. F. X., Hansen, D. K., & Porter, J. K. (2001). An Overview of Rodent Toxicities : Liver and Kidney Effects of Fumonisins and Fusarium moniliforme Toxicology : Subchronic Effects. 109(April 2000), 259–266.

Wang, B. B., Guo, C., Sun, S. L., Zhu, Z. D., & Duan, C. X. (2019). First Report of Maize Ear Rot Caused by Fusarium sporotrichioides in China. Plant Disease, 104(2), 567. https://doi.org/10.1094/PDIS-08-19-1669-PDN

Wang, J.-H., Li, H.-P., Zhang, J.-B., Wang, B.-T., & Liao, Y.-C. (2013). First Report of Fusarium Maize Ear Rot Caused by Fusarium kyushuense in China. Plant Disease, 98(2), 279. https://doi.org/10.1094/PDIS-05-13-0558-PDN

Wang, M. M., Chen, Q., Diao, Y. Z., Duan, W. J., & Cai, L. (2019). Fusarium incarnatum-equiseti complex from China. Persoonia: Molecular Phylogeny and Evolution of Fungi, 43, 70–89. https://doi.org/10.3767/persoonia.2019.43.03

Wang, W., Wang, B., Sun, X., Qi, X., Zhao, C., Chang, X., Khaskheli, M. I., & Gong, G. (2021). Symptoms and pathogens diversity of Corn Fusarium sheath rot in Sichuan Province, China. Scientific Reports, 11(1), 2–11. https://doi.org/10.1038/s41598-021-82463-2

Wang, Y., Zhang, X., Wang, T., Zhou, S., Liang, X., & Xie, C. (2022). The Small Secreted Protein FoSsp1 Elicits Plant Defenses and Negatively Regulates Pathogenesis in Fusarium. 13(May), 1–13. https://doi.org/10.3389/fpls.2022.873451

Wegulo, S. N., Baenziger, P. S., Hernandez Nopsa, J., Bockus, W. W., & Hallen-Adams, H. (2015). Management of Fusarium head blight of wheat and barley. Crop Protection, 73, 100–107. https://doi.org/10.1016/j.cropro.2015.02.025

Wen, J., Shen, Y., Xing, Y., Wang, Z., Han, S., Li, S., Yang, C., Hao, D., & Zhang, Y. (2021). QTL mapping of fusarium ear rot resistance in maize. Plant Disease, 105(3), 558–565. https://doi.org/10.1094/PDIS-02-20-0411-RE

Wigmann, É. F., Behr, J., Vogel, R. F., & Niessen, L. (2019). MALDI-TOF MS fingerprinting for identification and differentiation of species within the Fusarium fujikuroi species complex. Applied Microbiology and Biotechnology, 103(13), 5323–5337. https://doi.org/10.1007/s00253-019-09794-z

Woudenberg, J. H. C., Aveskamp, M. M., de Gruyter, J., Spiers, A. G., & Crous, P. W. (2009). Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia: Molecular Phylogeny and Evolution of Fungi, 22, 56–62. https://doi.org/10.3767/003158509X427808

Wyatt, R. D., & Henry, M. H. (1993). A Review of Fumonisin Production by Fusarium moniliforme and Fumonisin Toxicosis in Animals. Journal of Applied Poultry Research, 2(2), 188–192. https://doi.org/10.1093/japr/2.2.188

Xia, J. W., Sandoval-Denis, M., Crous, P. W., Zhang, X. G., & Lombard, L. (2019). Numbers to names – restyling the Fusarium incarnatum-equiseti species complex. Persoonia: Molecular Phylogeny and Evolution of Fungi, 43, 186–221. https://doi.org/10.3767/persoonia.2019.43.05

Xia, L. K., Cao, Y. Y., Wang, J., Zhang, J., Han, S. B., Li, H. Y., & Duan, C. X. (2021). First Report of Fusarium culmorum Causing Maize Stalk Rot in China. Plant Disease, 106(5), 1521. https://doi.org/10.1094/PDIS-07-21-1442-PDN

Xu, R., Shandilya, U. K., Yiannikouris, A., & Karrow, N. A. (2023). Traditional and emerging Fusarium mycotoxins disrupt homeostasis of bovine mammary cells by altering cell permeability and innate immune function. Animal Nutrition, 12, 388–397. https://doi.org/10.1016/j.aninu.2022.10.007

Xu, S., Wang, Y., Hu, J., Chen, X., Qiu, Y., Shi, J., Wang, G., & Xu, J. (2021). Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control, 130(May), 108259. https://doi.org/10.1016/j.foodcont.2021.108259

Xu, Y., Zhang, Z., Lu, P., Li, R., Ma, P., Wu, J., Li, T., & Zhang, H. (2023). Increasing Fusarium verticillioides resistance in maize by genomics-assisted breeding: Methods, progress, and prospects. Crop Journal, 11(6), 1626–1641. https://doi.org/10.1016/j.cj.2023.07.004

Yao, L., Li, Y., Ma, C., Tong, L., Du, F., & Xu, M. (2020). Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Journal of Integrative Plant Biology, 62(10), 1535–1551. https://doi.org/10.1111/jipb.12911

Yilmaz, N., Sandoval-Denis, M., Lombard, L., Visagie, C. M., Wingfield, B. D., & Crous, P. W. (2021). Redefining species limits in the fusarium fujikuroi species complex. Persoonia: Molecular Phylogeny and Evolution of Fungi, 46, 129–162. https://doi.org/10.3767/persoonia.2021.46.05

Yu, C., Saravanakumar, K., Xia, H., Gao, J., Fu, K., Sun, J., Dou, K., & Chen, J. (2017). Occurrence and virulence of Fusarium spp. associated with stalk rot of maize in North-East China. Physiological and Molecular Plant Pathology, 98, 1–8. https://doi.org/10.1016/j.pmpp.2016.12.004

Yu, C., Xu, H., Zhao, X., Litke, Q., Gong, J., Yang, C., & Liu, S. (2023). Developing sodium metabisulfite (SMBS)-containing Eudragit L100-55 microparticles for controlled intestinal release of SMBS to detoxify deoxynivalenol. Food Bioscience, 54, 102859. https://doi.org/https://doi.org/10.1016/j.fbio.2023.102859

Yu, S., Jia, B., Liu, N., Yu, D., Zhang, S., & Wu, A. (2021). Fumonisin B1 triggers carcinogenesis via HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells. Science of The Total Environment, 787, 147405. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147405

Yu, X., Feng, B., He, P., & Shan, L. (2017). From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 55, 109–137. https://doi.org/10.1146/annurev-phyto-080516-035649

Yue, Z., Tian, Z.-J., Zhang, J.-W., Zhang, S.-W., Li, Y. D., & Wu, Z. M. (2022). Overexpression of Lectin Receptor-Like Kinase 1 in Tomato Confers Resistance to Fusarium. 13(February). https://doi.org/10.3389/fpls.2022.836269

Zhang, H., Kim, M. S., Huang, J., Yan, H., Yang, T., Song, L., Yu, W., & Bo, W. (2022). Transcriptome analysis of maize pathogen Fusarium verticillioides revealed FvLcp1 , a secreted protein with type-D fungal LysM and chitin-binding domains , that plays important roles in pathogenesis and mycotoxin production. Microbiological Research, 265(August), 127195. https://doi.org/10.1016/j.micres.2022.127195

Zhang, H., Luo, W., Pan, Y., Xu, J., Xu, J. S., Chen, W. Q., & Feng, J. (2014a). First Report of Fusarium Ear Rot of Maize Caused by Fusarium andiyazi in China. Plant Disease, 98(10), 1428. https://doi.org/10.1094/PDIS-01-14-0038-PDN

Zhang, H., Luo, W., Pan, Y., Xu, J., Xu, J. S., Chen, W. Q., & Feng, J. (2014b). First Report of Fusarium temperatum Causing Fusarium Ear Rot on Maize in Northern China. Plant Disease, 98(9), 1273. https://doi.org/10.1094/PDIS-02-14-0124-PDN

Zhang, J., Cao, Y. Y., Han, S. B., Xia, L. K., Zhu, Z. D., Duan, C. X., Zhang, M. N., Yang, L. R., & Li, H. Y. (2021). First Report of Fusarium thapsinum Causing Maize Stalk Rot in China. Plant Disease, 105(9), 2722. https://doi.org/10.1094/PDIS-11-20-2469-PDN

Zhang, L., Kars, I., Essenstam, B., Liebrand, T. W. H., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., van den Ackerveken, G., & van Kan, J. A. L. (2014). Fungal Endopolygalacturonases Are Recognized as Microbe-Associated Molecular Patterns by the Arabidopsis Receptor-Like Protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiology, 164(1), 352–364. https://doi.org/10.1104/pp.113.230698

Zhang, X., Zheng, S., Yu, M., Xu, C., Li, Y., Sun, L., Hu, G., Yang, J., & Qiu, X. (2023). Evaluation of Resistance Resources and Analysis of Resistance Mechanisms of Maize to Stalk Rot Caused by Fusarium graminearum. Plant Disease, PDIS-04-23-0825-RE. https://doi.org/10.1094/PDIS-04-23-0825-RE

Zila, C. T., Ogut, F., Romay, M. C., Gardner, C. A., Buckler, E. S., & Holland, J. B. (2014). Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC Plant Biology, 14(1), 1–15. https://doi.org/10.1186/s12870-014-0372-6

Published

2024-09-28

How to Cite

Solórzano-Solórzano, J. A. ., Vélez Zambrano, S. M. ., & Vélez Olmedo, J. B. (2024). Fusarium spp. in corn crops: Identification, geographic distribution, symptoms, mycotoxins, disease cycle, control, and current and future challenges. Scientia Agropecuaria, 15(4), 537-556. https://doi.org/10.17268/sci.agropecu.2024.040

Issue

Section

Review Articles