Changes in soil quality indicators in response to land use based on a minimum data set

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2024.039

Keywords:

Soil properties, fertility, forest, silvopastoral systems, deforestation, Amazon

Abstract

The Ecuadorian Amazon region is permanently subject to deforestation processes and in parallel to the implementation of agricultural, and livestock management systems that can affect soil quality. This study assessed the effect of different land use types on soil quality using the Integrated Soil Quality Index (SQI) and minimum indicators. To do this, it considers representative soil samples, 4 types of land use, and a productive landscape in the province of Pastaza. The land use types evaluated were sugarcane (SC), agrosilvopastoral System (ASPS) silvopastoral timber system (SSTT), and secondary forest (SF). Land use type had significant effects on some soil properties and, therefore, on soil quality. The soil quality index was developed using BD, Ca+Mg/K, and SOM which had the highest weighting values, suggesting a higher contribution to the final SQI. The Soil Quality Index (SQI) showed significant differences (p < 0.05) between the different land uses, establishing the following order: SSPM (0.41) > SC (0.40) > B (0.34) > SASP (0.33). Therefore, the values obtained are considered low to moderate quality with SSPM and SC as the highest quality land uses. It is concluded that soil quality can be assessed and compared more accurately in the studies of land use using the current indexing framework due to its simplicity and quantitative flexibility. However, to evaluate soil quality more comprehensively and precisely, biological properties of soils should also be considered for SQI in future studies.

References

Abera, W., & Assen, M. (2019). Dynamics of Selected Soil Quality Indicators in Response to Land Use/Cover and Elevation Variations in Wanka Watershed, Northwestern Ethiopian Highlands. Ekológia (Bratislava), 38(2), 126–139. https://doi.org/10.2478/eko-2019-0010

Andrews, S. S., Flora, C. B., Mitchell, J. P., & Karlen, D. L. (2003). Growers’ perceptions and acceptance of soil quality indices. Geoderma, 114(3–4), 187–213. https://doi.org/10.1016/S0016-7061(03)00041-7

Bai, Z., Li, H., Yang, X., Zhou, B., Shi, X., Wang, B., Li, D., Shen, J., Chen, Q., Oenema, O., & Zhang, F. (2013). The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil, 372, 27–37. https://doi.org/10.1007/s11104-013-1696-y

Blake, G., & Hartge, K. (1986). Bulk density 1. Methods of soil analysis: Part 1 Physical and Mineralogical Methods (pp. 363–375).

Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326, 164–200. https://doi.org/10.1016/j.geoderma.2018.03.011

Bravo-Medina, C., Goyes-Vera, F., Arteaga-Crespo, Y., García-Quintana, Y., & Changoluisa, D. (2021). A soil quality index for seven productive landscapes in the Andean-Amazonian foothills of Ecuador. Land Degradation and Development, 32(6), 2226–2241. https://doi.org/10.1002/ldr.3897

Bravo-Medina, C., Torres-Navarrete, B., Arteaga-Crespo, Y., Garcia-Quintana, Y., Reyes-Morán, H., Changoluisa-Vargas, D., & Paguay-Sayay, D. (2023). Soil properties variation in a small-scale altitudinal gradient of an evergreen foothills forest, Ecuadorian Amazon region. In European Journal of Forest Research, 142(6), 1325–1339. https://doi.org/10.1007/s10342-023-01593-6

Bravo, C., Benítez, D., Cesar, J., Burgos, V., Alemán, R., Torres, B., & Marín, H. (2015). Caracterización socio-ambiental de unidades de producción agropecuaria en la Región Amazónica Ecuatoriana: Caso Pastaza y Napo Socio-Environmental Characterization of Agricultural Production Units in the Ecuadorian Amazon Region, Subjects: Pastaza and Nap. Revista Amazónica Ciencia y Tecnología, 4, 3–31.

Bravo, C., Ramírez, A., Marín, H., Torres, B., Alemán, R., Torres, R., Navarrete, H., & Changoluisa, D. (2017). Factores asociados a la fertilidad del suelo en diferentes usos de la tierra de la Región Amazónica Ecuatoriana. Revista Electronica de Veterinaria, 18(11), 1–16.

Cantú, M. P., Becker, A., Bedano, J. C., & Schiavo, H. F. (2007). Evaluación de la calidad de suelos mediante el uso de inidicadores e índices. Ciencia Del Suelo, 25(2), 173–178.

Doran, J. W., & Safley, M. (1997). Defining and assessing soil health and sustainable productivity. In C. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological indicators of soil health (pp. 1–28). CAB International.

Drobnik, T., Greiner, L., Keller, A., & Grêt-Regamey, A. (2018). Soil quality indicators – From soil functions to ecosystem services. Ecological Indicators, 94, 151–169. https://doi.org/10.1016/j.ecolind.2018.06.052

Espinosa, J., Moreno, J., Bernal, G., & Prat, C. (2018). The soils of Ecuador ((eds.) In J. Espinosa, J. Moreno & B. Gustavo (ed.); Issue October). World soils book series, (Vol. 7). Berlin: Springer International Publishing.

Farahani, E., Mosaddeghi, M. R., Mahboubi, A. A., & Dexter, A. R. (2019). Prediction of soil hard-setting and physical quality using water retention data. Geoderma, 338, 343–354. https://doi.org/10.1016/j.geoderma.2018.12.012

García Quintana, Y., Arteaga-Crespo, Y., Torres-Navarrete, B., Bravo-Medina, C., & Robles-Murillo, M. (2021). Biomasa aérea de familias botánicas en un bosque siempreverde piemontano sometido a grados de intervención. Colombia Forestal, 24(1), 45–59. https://doi.org/10.14483/2256201x.15939

Gee, B. J. (1979). Particle Size Analysis by Hydrometer: A Simplified Method for Routine Textural Analysis and a Sensitivity Test of Measurement Parameters. Soil Science Society of America Journal, 43, 1004–1007. https://doi.org/10.2136/sssaj1979.03615995004300050038x

González, V., Bravo, C., Romero, M., Andrade-Yucailla, S., Andino, M., Valle, A., Hidalgo-Guerrero, I., & Andrade-Yucailla, V. (2019). Evaluación de la calidad de los suelos en cultivares de caña de azúcar (Saccharum officinarum L.) en la parroquia Fátima provincia de Pastaza. Ciencia y Tecnología, 12(2), 15–22. https://doi.org/10.18779/cyt.v12i2.322

Karlen, D. L., Hurley, E. G., Andrews, S. S., Cambardella, C. A., Meek, D. W., Duffy, M. D., & Mallarino, A. P. (2006). Crop rotation effects on soil quality at three northern corn/soybean belt locations. Agronomy Journal, 98(3), 484–495. https://doi.org/10.2134/agronj2005.0098

Kiakojouri, A., & Gorgi, M. M. T. (2014). Effects of land use change on the soil physical and chemical properties and fertility of soil in Sajadrood catchment. Agricultural Engineering International: CIGR Journal, 16(3), 10–16.

Klute, A., & Page, A. L. (1986). Methods of soil analysis. Part 1. Physical and mineralogical methods; part 2. Chemical and microbiological properties. Madison: American Society of Agronomy.

Leul, Y., Assen, M., Damene, S., & Legass, A. (2023). Effects of land use types on soil quality dynamics in a tropical sub-humid ecosystem, western Ethiopia. Ecological Indicators, 147, 110024. https://doi.org/10.1016/j.ecolind.2023.110024

MAE. (2012a). Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaría de Patrimonio Natural.

MAE. (2012b). Sistema de clasificación de los ecosistemas del Ecuador continental. Ministerio de Ambiente Del Ecuador, Subsecretaría de Oatrimonio Natural.

Martín, N. J., & Pérez, G. (2009). Evaluación Agroproductiva de cuatro sectores de la provincia de Pastaza en la Amazonía Ecuatoriana. Cultivos Tropicales, 30(1), 5–10.

McGrath, J. M., Spargo, J., & Penn, C. J. (2014). Soil Fertility and Plant Nutrition. In Encyclopedia of Agriculture and Food Systems (pp. 166–184). https://doi.org/10.1016/B978-0-444-52512-3.00249-7

Molaeinasab, A., Bashari, H., Tarkesh Esfahani, M., & Mosaddeghi, M. R. (2018). Soil surface quality assessment in rangeland ecosystems with different protection levels, central Iran. Catena, 171 (June 2017), 72–82. https://doi.org/10.1016/j.catena.2018.07.004

Nelson, D. W., & Sommers, L. E. (1982). Total Carbon, Organic Carbon, and Organic Matter (pp. 539–579). https://doi.org/10.2134/agronmonogr9.2.2ed.c29

Nieto, C., & Caicedo, C. (2012a). Análisis reflexivo sobre el desarrollo agropecuario sostenible en la Amazonía Ecuatoriana, INIAP – EECA. Iniap, 24–50, 102. http://repositorio.iniap.gob.ec/handle/41000/3791

Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (2002). Laboratory Methods of soil and plant analysis. Working Manual, 29-32, 67-68, 78, 86-87.

Peng, S., Chen, A., Fang, H., Wu, J., & Liu, G. (2013). Effects of vegetation restoration types on soil quality in Yuanmou dry-hot valley, China. Soil Science and Plant Nutrition, 59(3), 347–360. https://doi.org/10.1080/00380768.2013.785918

Pla, I. (2010). Medición y evaluación de propiedades físicas de los suelos: dificultades y errores más frecuentes. {II}-propiedades hidrológicas. Suelos Ecuatoriales, 40, 94–127.

Pla, I. (2017). Análisis Crítico de la Calidad de Suelos y de sus indicadores. Suelos Ecuatoriales, 43(1), 1–8.

Pla, S. I. (2010). Medición y evaluación de propiedades físicas de los suelos: dificultades y errores más frecuentes. Propie-dades hidrológicas. Suelos Ecuatoriales, 40(2), 94–127.

Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H.-J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009

Reynolds, W., Elrick, D. E., Youngs, E. G., Booltink, H. W. G., & Bouma., J. (2002). Laboratory methods: Falling head soil core (tank) method. In Methods of soils analysis, Part 4 (pp. 802–812).

Safaei, M., Bashari, H., Mosaddeghi, M. R., & Jafari, R. (2019). Assessing the impacts of land use and land cover changes on soil functions using landscape function analysis and soil quality indicators in semi-arid natural ecosystems. Catena, 177, 260–271. https://doi.org/10.1016/j.catena.2019.02.021

Torres, B., Andrade, V., Heredia-R, M., Toulkeridis, T., Estupiñán, K., Luna, M., Bravo, C., & García, A. (2022). Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon. Sustainability (Switzerland), 14(17). https://doi.org/10.3390/su141710738

Torres, B., Bravo, C., Torres, A., Tipán-Torres, C., Vargas, J. C., Herrera-Feijoo, R. J., Heredia-R, M., Barba, C., & García, A. (2023). Carbon Stock Assessment in Silvopastoral Systems along an Elevational Gradient: A Study from Cattle Producers in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability (Switzerland), 15(1), 1–14. https://doi.org/10.3390/su15010449

Torres, B., Herrera-Feijoo, R. J., Torres, A., Bravo, C., & García, A. (2024). Tree diversity and Its Ecological Importance Value in Silvopas-Toral Systems: A Study Along Elevational Gradients in the Su-Maco Biosphere Reserve, Ecuadorian Amazon. Land, 13, 281. https://doi.org/10.3390/land13030281

Torres, B., Vasseur, L., López, R., Lozano, P., García, Y., Arteaga, Y., Bravo, C., Barba, C., & García, A. (2019). Structure and above ground biomass along an elevation small-scale gradient: case study in an Evergreen Andean Amazon forest, Ecuador. Agroforestry Systems, 94(4), 1235–1245. https://doi.org/10.1007/s10457-018-00342-8

Viana, R. M., Ferraz, J. B. S., Neves, A. F., Vieira, G., & Pereira, B. F. F. (2014). Soil quality indicators for different restoration stages on Amazon rainforest. Soil and Tillage Research, 140, 1–7. https://doi.org/10.1016/j.still.2014.01.005

Zhang, Y., Xu, X., Li, Z., Liu, M., Xu, C., Zhang, R., & Luo, W. (2019). Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment, 650, 2657–2665. https://doi.org/10.1016/j.scitotenv.2018.09.372

Downloads

Published

2024-09-28

How to Cite

Bravo-Medina, C., Sarabia-Guevara, D., & Sancho-Aguilera, D. (2024). Changes in soil quality indicators in response to land use based on a minimum data set. Scientia Agropecuaria, 15(4), 525-535. https://doi.org/10.17268/sci.agropecu.2024.039

Issue

Section

Original Articles