Biofertilizer based on fish waste increases the yield of Vigna unguiculata L. Walp, Zea mays L., and the rhizospheric microbiota
DOI:
https://doi.org/10.17268/sci.agropecu.2023.044Keywords:
Plant growth, microbial fertility, cowpea, popcorn morado, fish wastesAbstract
Crops of Vigna unguiculata L. “cowpea” and Zea mays L. “corn” require chemical fertilizers for proper growth and development; however, its inadequate application contaminates the environment, creating the need to search new alternatives that reduce its impact. Due to this, the objective of this research was to determine the effect of a biofertilizer from fish wastes on the yield of cowpea and corn, and its effect on their rhizospheric microbiota. The physicochemical and biological characteristics of the biofertilizer were determined, and then was applied on the field under a completely randomized block design with six treatments: absolute control, chemical control, biofertilizer at 1%, 1.25%, 1.5% and 1.25% plus chemical fertilizer. The application of biofertilizer at 1, 1.25 and 1.5% increased the height, root length and yield of cowpea; however, the increase percentages were lower than those obtained with chemical fertilizer and the biofertilizer at 1.25% plus chemical fertilizer. In the case of corn, all treatments with biofertilizer increased the growth and yield of aerial biomass compared to the control, and the percentages of increase exceeded the chemical fertilizer in terms of the number of leaves, length and root biomass. In addition, the biofertilizer increased the microbial fertility of the soil expressed as the number of colony-forming units of nitrogen-fixing and phosphate-solubilizing microorganisms per gram of soil in both crops. In conclusion, a positive effect of the biofertilizer from fish wastes was evidenced, which increased the yield of cowpea and corn, as well as an increase in soil microbial fertility.
References
Acosta, R. (2019). Características físicas, químicas, microbiológicas y efectividad agronómica del abono líquido biol obtenido por digestión anaerobia de estiércol de animales con rastrojo. Tesis de maestría, Universidad Nacional Pedro Ruiz Gallo, Perú.
Ahmed, M., Rauf, M., Mukhtar, Z., & Saeed, N. (2017). Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to enviroment and human health. Environmental Science and Pollution Research, 24(35), 26983-26987. https://doi.org /10.1007/s11356-017-0589-7
Ahuja, I., Dauksas. E., Remme, J., Richardsen, R., & Loes, A. (2020). Fish and fish waste-based fertilizers in organic farming – With status in Norway: A review. Waste Management, 115, 95-112. https://doi.org/10.1016/j.wasman.2020.07.025
Altamirano, L., Ramos, E., Iglesias, S., & Carreño, C. (2018). Potencialidades de bacterias productoras de polihidroxialcanoatos (PHA) aisladas de Asparagus officinalis L. (Asparagaceae). Arnaldoa, 28(2), 417-430. 21 http://doi.org/10.22497/arnaldoa.282.28211
Aranganathan, L., & Radhika, R. (2016). Bioconversion of marine trash fish (MTF) to organic liquid fertilizer for effective solid waste management and its efficacy on tomato growth. Management of Environmental Quality, 27(1), 93-103. https://doi.org/10.1108/MEQ-05-2015-0074
Benavides, A., & Plasencia, C. (2012). Caracterización físico – química y biológica del abono líquido “Biol” obtenido por digestión anaerobia de tres sustratos orgánicos en Jayanca, Lambayeque. Tesis de pregrado, Universidad Nacional Pedro Ruiz Gallo, Perú.
Choi, H. (2020). Effects of organic liquid fertilizers on biological activities and fruit productivity in open-field cherry tomato. Soil and Plant Nutrition, 79(3), 447-557. https://doi.org/10.1590/1678-4499.20200053
Chuan, N., Peng, G., Bing, W., Wei, L., Ni, J., & Kun, C. (2017). Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/S2095-3119(16)61476-4
Contreras, H., & Carreño, C. (2018). Eficiencia de la biodegradación de hidrocarburos de petróleo por hongos ¿filamentosos aislados de suelo contaminado. Revista Científica UNTRM: Ciencias Naturales e Ingeniería, 1(1), 27-33. http://dx.doi.org/10.25127/ucni.v1i1.269
Córdova, L., Robles, H., Carreño, C., Zuñiga, G., & Mora, M. (2022). Obtención de Bacillus y Pseudomonas de la rizósfera de Opuntia quitensis “tuna” como promotores de crecimiento en Zea mays L. Revista Ciencia y Tecnología, 18(2), 105-114. https://doi.org/10.17268/rev.cyt.2022.02.09
Delgado, E., Benavente, G., & Cáceres, G. (2019). Elaboración de fertilizante orgánico a partir de vísceras de trucha (Oncorhynchus mikyss) y jurel (Trachurus murphyi), cuantificación y evaluación del efecto de los nutrimentos minerales. Anales Científicos, 80(2), 452-461. https://doi.org/10.21704/ac.v80i2.1471
Ding, J., Jiang, X., Guan, D., Zhao, B., Ma, M.., et al. (2016). Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Applied Soil Ecology, 111(1), 114-122. https://doi.org/10.1016/j.apsoil.2016.12.003
Espinales, C., Romero, M., Calderón, G., Vergara, K., Cáceres, P., & Castillo, P. (2023). Collagen, protein hydrolysates and chitin from by-products of fish and shellfish: An overview. Heliyon, 9, e14937. https://doi.org/10.1016/j.heliyon.2023.e14937
Florez, M., Roldán, D., & Juscamaita, J. (2020). Evaluación de fitotoxicidad y caracterización de un fertilizante líquido elaborado mediante fermentación láctica utilizando subproductos del procesamiento de trucha (Oncorhynchus mykiss). Ecología Aplicada, 19(2), 121-131. http://dx.doi.org/10.21704/rea.v19i2.1563
Kusuma, I., Suriani, N., & Ramona, Y. (2021). The use of fish waste based organic fertilizer to improve the growth of balinese red rice (Oryza sativa L Cv. Barak Cenana). Asian Journal of Applied Research for Community Development and Empowerment, 5(2), 13-18. https://doi.org/10.29165/ajarcde.v5i2.67
González, A., Figueroa, U., Preciado, P., Núñez, G., Luna, J., & Antuna, O. (2016). Uso eficiente y recuperación aparente de nitrógeno en maíz forrajero en suelos diferentes. Revista Mexicana de Ciencias Agrícolas, 7(2), 301-309.
Gutiérrez, F., Díaz, S., Rojas, Z., Gutiérrez, W., & Vallejos, L. (2019). Elaboración de abono orgánico (biol) para su utilización en la producción de alfalfa (Medicago sativa v. vicus) en Cajamarca. Revista Perspectiva, 20(4), 441-447. https://doi.org/10.33198/rp.v20i2.00057
Herawati, J., Indarwati, I., & Ernawati, E. (2020). Test formulation of liquid organic fertilizer on growth and result of soybean plants. Journal of Physics: Conference Series, 1469, 1-8. https://doi.org/10.1088/1742-6596/1469/1/012015
Hernández-Álvarez, C., Peimbert, M., Rodríguez, P., Trejo, D., & Alcaraz, L. (2023). A study of microbial diversity in a biofertilizer consortium. Plos One, 18(8): e0286285. https://doi.org/10.1371/journal.pone.0286285
INACAL (Instituto Nacional de Calidad). (2020). NTP 360.506.2020. Calidad de agua. Coliformes totales, coliformes termotolerantes (fecales) y Escherichia coli. Método de ensayo por fermentación en tubos múltiples. 1° ed.
Joe, M., Deivaraj, S., Benson, A., Henry, A., & Narendrakumar, G. (2018). Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agriculture and Natural Resources, 52(3), 305-308. https://doi.org/10.1016/j.anres.2018.09.014
Lakhal, D., Boutaleb, N., Bahlaouan, B., Taiek, T., Fathi, A., et al. (2017). Mixture experimental design in the development of a bio fertilizer from fish waste, molasses and scum. International Journal of Engineering Research & Technology, 6(6), 588-594.
Maroulis, M., Matsia, S., Lazopoulos, G., Parvulescu, O., Ion, V., et al. (2023). Chemical and biological profiling of fish and seaweed residues to be applied for plant fertilization. Agronomy, 13, 2258. https://doi.org/10.3390/agronomy13092258
Ning, C., Gao, P., Wang, B., Lin, W., Jiang, N., & Cai, K. (2017). Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/S2095-3119(16)61476-4
Rishitha, M., & Rao M. (2019). Bioconversion of fish waste into a liquid fertilizer and its impact on semi- arid tropical crops. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 5(1), 903-912. https://doi.org/10.26479/2019.0501.76
Rouphael, Y., & Colla, G. (2020). Biostimulants in Agriculture. Frontiers in Plant Science, 11(40), 1-7. https://doi.org/10.3389/fpls.2020.00040
Salavarría, J. (2023). Efecto de la aplicación de abonos orgánicos sólidos y líquidos en el cultivo de pimiento (Capsicum annuum). Tesis de grado, Universidad Agraria del Ecuador, Ecuador.
Saputra, R., Sari, N., & Norsaleha, R. (2022). Nutrient uptake and yield of paddy cultivated under intensification with fish amino acid as liquid organic fertilizer. International Journal of Biosciences, 20(4), 85-96. http://dx.doi.org/10.12692/ijb/20.4.85-96
SENAMHI. (2022). Mapa Climático del Perú. Servicio Nacional de Meteorología e Hidrología del Perú.
Suárez, L., Girón, Y., & Farfán, E. (2022). Proyecto Desarrollo de la técnica de producción de abono líquido a partir del reaprovechamiento de residuos de la pesca artesanal con la participación de la Asociación de Procesadores Artesanales de Productos Hidrobiológicos del Centro Pesquero de Santa Rosa. PNIPA/Ministerio de la Producción. Perú.
Thendral, B., & Geetha, A. (2019). Physicochemical characterization of traditionally fermented liquid manure from fish waste (Gunapaselam). Indian Journal of Traditional Knowledge, 18(4), 830-836. https://doi.org/10.13140/RG.2.2.28751.23206
Timsina, J. (2018). Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy, 8(10), 214. https://doi.org/10.3390/agronomy8100214
Ugulu, I., Ahmad K., Khan, Z., Munir, M. Wadij, K., & Bashir, H. (2020). Effects of organic and chemical fertilizers on the growth, heavy metal/metalloid accumulation, and human health risk of wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 28(10), 12533-12545. https://doi.org/10.1007/s11356-020-11271-4
Wei, M., Hu, G., Wang, H., Bai, E., Lou, Y., Zhang, A., & Zhuge, Y. (2017). 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. European Journal of Soil Biology, 82(1), 27-34. http://dx.doi.org/10.1016/j.ejsobi.2017.08.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Scientia Agropecuaria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).