Effect of biotic and abiotic factors on the content of flavonoids in leaves of Passiflora sp. L.: A systematic review
DOI:
https://doi.org/10.17268/sci.agropecu.2023.039Keywords:
Flavonoids, fertilization, microorganisms, Passiflora, arbuscular mycorrhizal fungiAbstract
The genus Passiflora accounts for 17% of global flavonoid production, and several strategies have been explored to increase their production in these plants, given the growing demand for these metabolites. The aim of this study is to examine the published literature on the correlation between flavonoid concentrations in Passiflora genus leaves and factors such as microorganism presence, soil fertility, fertilizer use, soil conditioners, agronomic practices, weather patterns, and plant phenology. The search was conducted across nine databases. Web of Science, Nature, Agris, Dialnet, Scielo, Science Database-ProQuest, Scopus (Elsevier), Springer, and EBSCOhost and two search engines: Google Scholar and Semantic Scholar, obtaining 19 indexed articles. The results indicate that treatments incorporating a single biotic or abiotic factor in the crop lead to a 380% increase in the production of flavonoids at the leaf level, while the combination of different biotic and abiotic factors leads to a 491% increase in the production of this group of metabolites at the leaf level. It is essential to assess the integrated agronomic management of Passiflora sp. to increase the concentration of these metabolites in the leaves of productive branches with fully ripened fruits ready for harvest (BBCH code 89), without losing the possibility of using the current main product of the crop.
References
Altendorf, S. (2018). Minor Tropical Fruits: Mainstreaming a niche market. Food Outlook, 67-75 of OMS.
Amani-Machiani, M., Javanmard, A., Habibi Machiani, R., & Sadeghpour, A. (2022). Arbuscular mycorrhizal Fungi and Changes in Primary and Secondary Metabolites. Plants, 11(17), 2183. https://doi.org/10.3390/plants11172183
Antognoni, F., Zheng, S., Pagnucco, C., Baraldi, R., Poli, F., & Biondia, S. (2007). Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia, 78, 345-352. https://doi:10.1016/j.fitote.2007.02.001
Barp, E. A., Soares, G. L., Gosmann, G., Machado, A. M., Vecchi, C., & Moreira, G. R. (2006). Phenotypic plasticity in Passiflora suberosa L. (Passifloraceae): induction and reversion of two morphs by variation in light intensity. Brazilian journal of biology, 66(3), 853-862. https://doi.org/10.1590/s1519-69842006000500011
Campos, M., Uliana, M., Montero, D. V., Lima, G., & Ming, L. C. (2015). Effects of organic fertilization on biomass production and bioactive compounds in Passiflora incarnata L. Int J Phytomedicine, 2, 1-4. https://doi.org/10.15171/ijpni.2015.11
Chagnon, P. L., Bradley, R. L., Maherali, H., & Klironomos, J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci, 18(9), 484-491. https://doi.org/10.1016/j.tplants.2013.05.001
Cruz, J., Pereira, Z., Corrêa, R., Lamarão, C., Sanches, E., Campelo, P., & Bezerra, J. (2022). Bioactive compounds, functional properties, and technological application of Passiflora quadrangularis: A review. JSFA Reports, 3(4), 150-160. https://doi.org/10.1002/jsf2.108
Da Silva, A. P., Segatto, M. L., Stahl, A. M., & Gomes, V. (2020). Development and application of green and sustainable analytical methods for flavonoid extraction from Passiflora waste. BMC Chemistry, 14, 56. https://doi.org/10.1186/s13065-020-00710-5
Deng, B., Li, Y., Lei, G., & Liu, G. (2019). Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus. Plant Physiol. Biochem, 135, 111-118. https://doi.org/10.1016/j.plaphy.2018.12.001
Dhawan, K., Dhawan, S., & Sharma, A. (2004). Passiflora: a review update. J. Ethnopharmaco, 94(1), 1-23. https://doi.org/10.1016/j.jep.2004.02.023
Dini, I., Graziani, G., Fedele, F. L., Sicari, A., Vinale, F., Castaldo, L., & Ritieni, A. (2020). Effects of Trichoderma biostimulation on the phenolic profile of extra-virgin olive oil and olive oil by-products. Antioxidants, 9(4), 284. https://doi.org/10.3390/antiox9040284
Dzobo, K. (2022). The role of natural products as sources of therapeutic agents for innovative drug discovery. In: Comprehensive Pharmacology. Ed: Terry Kenakin, pp 408-422. https://doi.org/10.1016/B978-0-12-820472-6.00041-4
Fernandes, F. F., Wsposito, M. P., Gonçalves da Silva, M. R., Cardoso-Gustavson, P., Furlan, C. M., Hoshika, Y., Carrari, E., Magni, G., Domingos, M., & Paoletti, E. (2019). The passion fruit liana (Passiflora edulis Sims, Passifloraceae) is tolerant to ozone. Science of The Toal Environment, 656, 1091-1101. https://doi.org/10.1016/j.scitotenv.2018.11.425
Ghasemzadeh, A., Ashkani, S., Baghdadi, A., Pazoki, A., Jaafar, H. Z. E., & Rahmat, A. (2016). Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation. Molecules, 21, 1-15. https://doi:10.3390/molecules2109120
Gosmann, G., Provensi. G., Comunello, L. N., & Rates, S. M. K. (2011). Composição química e aspectos farmacológicos de espécies de Passiflora L. (Passifloraceae). Revista Brasileira de Biociencias, 9(1), 88-99.
Goulart, M. C., Cueva, L. G., Hidalgo, K. J., Attili‐Angelis, D., & Fantinatti‐Garboggini, F. (2019). Comparison of specific endophytic bacterial communities in different developmental stages of Passiflora incarnata using culture‐dependent and culture‐independent analysis. Open Microbiol. J, 12, 1-16. https://doi.org/10.1002/mbo3.896
Guimaraes, S. F., Lima, I. M., & Modolo, L. V. (2020). Phenolic content and antioxidant activity of parts of Passiflora edulis as a function of plant developmental stage. Acta Bot. Bras, 34, 74-82. https://doi.org/10.1590/0102-33062019abb0148
Haukioja, E., Ossipov, V., Koricheva, J., Honkanen, T., Larsson, S., & Lempa, K. (1998). Biosynthetic origin of carbon-based secondary compounds: cause of variable responses of woody plants to fertilization? Cheoecology, 8, 133-139. https://doi.org/10.1007/s000490050018
He, X., Luan, F., Yang, Y., Wang, Z., Zhao, Z., et al. (2020). Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front. Pharmacol, 11, 617. https://doi.org/10.3389/fphar.2020.00617
Hernández-Martínez, A., Lozano-Puentes, H., Camacho-Montealegre, C., Costa, G., & Díaz-Ariza, L. (2023). Establishing the Relationship Between Flavonoid Content, Mycorrhization, and Soil Nutritional Content in Different Species of the Genus Passiflora in Colombia. ACS Omega, 8, 40647-40656. https://doi.org/10.1021/acsomega.3c05606
Hodaei, M., Rahimmalek, M., Arzani, A., & Talebi, M. (2018). The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind. Crop. Prod, 120, 295–304. https://doi.org/10.1016/j.indcrop.2018.04.073.
Huang, R., Wu, W., Shen, S., Fan, J., Chang, Y., Chen, S., & Ye, X. (2018). Evaluation of colorimetric methods for quantification of citrus flavonoids to avoid misuse. Anal. Methods, 10(22), 2575-2587. https://doi.org/10.1039/C8AY00661J
Julkunen, R., Nenadis, N., Neugart, S., Robson, M., Agati, G., et al. (2015). Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochem. Ver, 14, 273-297. https://doi.org/10.1007/s11101-014-9362-4
Kiyohara, H., Matsumoto, T., & Yamada, H. (2004). Combination Effects of Herbs in a Multi-herbal Formula: Expression of Juzen-taiho-to’s Immuno-modulatory Activity on the Intestinal Immune System. Evid. Based Complementary Alterna. Med, 1(1), 83-91. https://doi.org/10.1093/ecam/neh004
Lan, H., Lai, B., Zhao, P., Dong, X., Wei, W., Ye, Y., & Wu, Z. (2020). Cucumber mosaic virus infection modulated the phytochemical contents of Passiflora edulis. Microb. Pathog, 138, 1-8. https://doi.org/10.1016/j.micpath.2019.103828
Lewis, D. (2019). Boron: the essential element for vascular plants that never was. New Phytol, 221(4), 1685-1690. https://doi.org10.1111/nph.15519
Li, S., & Weng, J. (2017). Demystifying traditional herbal medicine with modern approach. Nat. Plants, 3(8), 17109. https://doi.org/10.1038/nplants.2017.109
Li, Z., Jiang, H., Yan, H., Jiang, X., Ma, Y., & Qin, Y. (2021). Carbon and nitrogen metabolism under nitrogen variation affects flavonoid accumulation in the leaves of Coreopsis tinctoria. Peer J, 9, 12152. https://doi.org/10.7717/peerj.12152
Liang, D., Yousef, A. F., Wei, X., Moaaz, M., Yu, W., Yang, L., Oelmüller, R., & Chen, F. (2021). Increasing the performance of Passion fruit (Passiflora edulis) seedlings by LED light regimes. Sci. Rep, 11, 20967.https://doi.org/10.1038/s41598-021-00103-1
Liu, W., Feng, Y., Yu, S., Fan, Z., Li, X., Li, J., & Yin, H. (2021). The flavonoid biosynthesis network in plants. Int. J. Mol. Sci, 22(23), 12824. https://doi.org/10.3390/ijms222312824
Mendonça, F. S. M., Monnerat, P. H., Vieira, I. J. C., & De Carvalho, A. J. C. (2007). Flavonóides e composição mineral de folhas de maracujazeiro amarelo em função da posição da folha no ramo. Cienc. Rural, 37(6), 1634-1639. https://doi.org/10.1590/s0103-84782007000600020
Mendonça. F. M. S., Monnerat, P. H., & Curcino Vieira, I. J. (2008). Mineral Deficiency in Passiflora alata Curtis: Vitexin Bioproduction. J. Plant. Nutr. Soil Sci, 31(10), 1844-1854. http://dx.doi.org/10.1080/01904160802325552
Ming, L. C., Maia, C. L., Conceicao, D. M., Yuhara, T. Y., Mayo Marques, M. O., et al. (2012). Phytomass and flavonoid production in different organs and phenological stages of Passiflora alata Dryander. Res. J. Med. Plant, 6(45), 5695-5700. http://dx.doi.org/10.5897/JMPR12.432
Muñiz, B.C., Falcão, E. L., Bastos, C. J. A., & Barbosa da Silva, F. S. (2023). Cultivation protocol using a coir-based substrate modulates the concentration of bioactive compounds and the antioxidant activity of Passiflora alata Curtis seedlings. Ciênc. Agrotec., 47, e014922. https://doi.org/10.1590/1413-7054202347014922
Muñiz, B. C., Falcão, E. L., Bastos, C. J. A., & Barbosa da Silva, F. S. (2022). The application of coir dust modulates the production of phytochemicals in mycorrhizal Passiflora alata Curtis. Rhizosphere., 23, 100573. https://doi.org/10.1016/j.rhisph.2022.100573
Muniz, B. C., Falcão, E. L., Monteiro, R. P., dos Santos, E. L., Bastos, C. J. A., & Barbosa da Silva, F. S. (2021). Acaulospora longula España & N.C. Schenck: A low-cost bioinsumption to optimize phenolics and saponins production in Passiflora alata Curtis. Ind. Crops Prod, 167, 113498. https://doi.org/10.1016/j.indcrop.2021.113498
Murillo, E., Jiménez, A., Velásquez, A., Clavijo, H., & Velásquez, C. (2023). Phenolic Components and Antioxidant Capacity of Six Wild Passiflora Species from the Andean Region of Colombia. J. Herbs Spices Med. Plants, 29(4), 319-335. https://doi.org/10.1080/10496475.2023.2181260
Nabavi, S. M., Šamec, D., Tomczyk, M., Milella, L., Russo, D., et al. (2020). Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic. Engineering. Biotechnol. Adv, 38, 107316. https://doi.org/10.1016/j.biotechadv.2018.11.005
Ni, Y., Lin, K., Chen, K., Wu, C., & Chang, Y. (2020). Flavonoid Compounds and Photosynthesis in Passiflora Plant Leaves under Varying Light Intensities. Plants, 9(5), 633. https://doi.org/10.3390/plants9050633
Oliveira, M.S., Campos, M. A. S., & Silva, F. S. B. (2014). Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J. Sci. Food Agric, 95, 522-528. https://doi.org/10.1002/jsfa.6767
Oliveira, M. S., Pinheiro, I. O., & Silva, F. S. B. (2015). Vermicompost and arbuscular mycorrhizal fungi: An alternative to increase foliar orientin and vitexin-2-O-ramnoside synthesis in Passiflora alata curtis seedlings. Ind. Crops Prod, 77, 754-757. https://doi.org/10.1016/j.indcrop.2015.09.061
Oliveira, M. V., Oliveira, L. L., & Costa, A. M. (2018). Effect of training system and climate conditions on phytochemicals of Passiflora setacea, a wild Passiflora from Brazilian Savannah. Food Chem, 266, 350-358. https://doi.org/10.1016/j.foodchem.2018.05.097
Oliveira, P. T., Lima dos Santos, E., Viturino da Silva, W. A., Assunção Ferreira, M. R., Lira Soares, L. A., Alves da Silva, F., & Barbosa da Silva, F. S. (2019a). Use of mycorrhizal fungi releases the application of organic fertilizers to increase the production of leaf vitexin in yellow passion fruit. J. Sci. Food Agric, 100, 1816–1821. https://doi.org/10.1002/jsfa.10197
Oliveira, P. T., Lima dos Santos, E., Viturino da Silva, W. A., Assunção Ferreira, M. R., Lira Soares, L. A., Alves da Silva, F. A., & Barbosa da Silva, F. S. (2019b). Production of biomolecules of interest to the anxiolytic herbal medicine industry in yellow passionfruit leaves (Passiflora edulis f. flavicarpa) promoted by mycorrhizal inoculation. J. Sci. Food Agric, 99(7), 3716-3720. https://doi.org/10.1002/jsfa.9598
Pagassini, J. A. V., de Godoy, L. J. G., Campos, F. G., Barzotto, G. R., Ribeiro, M. A., & Gernandes, C. S. (2021). Silicon and mechanical damage increase polyphenols and vitexin in Passiflora incarnata L. Sci. Rep, 11, 22064. https://doi.org/10.1038/s41598-021-01647-y
Pang, Z., Chen, J., Wang, T., Gao, C., Li, Z., Guo, L., Xu, J., & Cheng, Y. (2021). Linking plant secondary metabolites and plant microbiomes: a review. Front in Plant Sci, 12, 621276. https://doi.org/10.3389/fpls.2021.621276
Pedone, M. V. L., Silva, F. S., & Maia, L. C. (2015). Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential. Acta Physiol. Plant, 37, 1-12. https://doi.org/10.1007/s11738-015-1781-3
POWO. (2023). "Plants of the World Online”. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/
Rai, S., Nagar, J. C., & Mukin, M. (2022). Pharmacological and Medicinal Importance of Passiflora edulis: A Review. Int. J. Res. Rev, 9(4), 341-349. https://doi.org/10.52403/ijrr.20220442
Ramaiya, S. D., Lee, H. H., Xiao, Y., Shahbani, N. S., Zakaria, M. H., & Bujang, J. S. (2021). Organic cultivation practices enhanced antioxidant activities and secondary metabolites in giant granadilla (Passiflora quadrangularis L.). PloS one, 16(7), e0255059. https://doi.org/10.1371/journal.pone.0255059
Ranjan, R., Kishore, K., Ranjan, R., Sheikh, T. J., Kumar, A., Kumar, B., Kumar, S., & Kumar, R. (2023). Nutraceutical Potential of Vitexin: A Flavone Glycoside. J. Phytopharm, 12(1), 44-50. http://10.31254/phyto.2023.12107
Reimberg, M. C., Colombo, R., & Yariwake, J. H. (2008). Multivariate analysis of the effects of soil parameters and environmental factors on the flavonoid content of leaves of Passiflora incarnata L., Passifloraceae. Rev. Bras. Farmacogn, 19(4), 853-859. http://dx.doi.org/10.1590/S0102-695X2009000600010
Rey, D., Alves, T., Miranda, P. M., Gonçalves, R., Sepulveda, M., et al. (2020). Cellular target of isoquercetin from Passiflora ligularis Juss for glucose uptake in rat soleus muscle. Chem. Biol. Interact, 330, 109198. https://doi.org/10.1016/j.cbi.2020.109198
Rodríguez-León, A., Rodríguez-Carlosama, A., Melgarejo, L. M., & Miranda, D. (2015). Caracterización fenológica de granadilla (Passiflora ligularis Juss) crecida a diferentes altitudes en el departamento del Huila. In: Granadilla (Passiflora ligularis Juss): Caracterización ecofisiológica del cultivo. In: Chapter: Caracterización fenológica de granadilla (Passiflora ligularis Juss) crecida a diferentes altitudes en el departamento del Huila. Publisher: Universidad Nacional de Colombia, Bogotá Ed: Luz Marina Melgarejo, pp.53-90.
Sesan, T. E., Oancea, A. O., Stefan, L. M., Mănoiu, V. S., Ghiurea, M., Răut, L., et al. (2020). Effects of Foliar Treatment with a Trichoderma Plant Biostimulant Consortium on Passiflora caerulea L. Yield and Quality. Microorganisms, 8(1), 2-17. https://doi:10.3390/microorganisms8010123
Shah, A., & Smith, D.L. (2020). Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy, 10(8), 1209. https://doi.org/10.3390/agronomy10081209
Sharan, S., Soni, H., Mishra, K., & Kumar, A. (2011). Recent updates on the genus Passiflora: A review. Int. J. Res. Phytochem. Pharmacol, 1(1), 1-16.
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem, 383, 132531. http://doi.org/10.1016/j.foodchem.2022.132531
Shraim, A.M., Ahmed, T.A., Rahman, M.M., Hijji, Y.M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932
Silva, F. A., Maia, L. C., & Silva, F. S. B. (2019). Arbuscular mycorrhizal fungi as biotechnology alternative to increase concentrate of secondary metabolites in Zea mays L. Rev. Bras. Bot, 42, 189-193. https://doi.org/10.1007/s40415-018-0508-2
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development. Ed. VI Sinauer Associates Incorporated.
Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int. J. Mol. Sci, 19, 1578. https://doi.org/10.3390/ijms19061578
Tikhonovich, I. A., & Provorov, N. A. (2007). Beneficial plant-microbe interactions. Comprenhensive and Molecular Phytopathology, 365-420. https://doi.org/10.1016/B978-044452132-3/50018-3
Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23, 1-26. https://doi:10.3390/molecules23040762
Zhang, J., Tao, S., Hou, G., Zhao, F., Meng, Q., & Tan, S. (2023). Phytochemistry, nutritional composition, health benefits and future prospects of Passiflora: A review. Food Chem., 428, 136825. https://doi.org/10.1016/j.foodchem.2023.136825
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Scientia Agropecuaria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).