Validation of the incorporation of emotional response in consumer-based sensory development: case study in Peruvian craft beers
DOI:
https://doi.org/10.17268/sci.agropecu.2023.033Keywords:
craft beer, Kano model, external preference mapping, Napping®-Ultra Flash ProfileAbstract
It is important to identify the emotional response and sensorial needs of consumers to get commercial success of the alimentary sector in order to improve the consumption experience. Obtaining attractive characteristics through the application of the Kano model allows increase the consumer satisfaction. Furthermore, the Napping®-Ultra Flash Profile (UFP) methodology makes it possible that producers of craft beers may well reliably characterize their products. Likewise, the use of External Preference Mapping (EPM) allows the identification of those highly accepted products. In this sense, the goal of the present study was to validate, through the application of EPM, that the incorporation of the Kano model in the sensory design increases consumer satisfaction in turn obtaining the sensory profile of Peruvian craft beers. The Kano model permitted to determine the attractive characteristics of representative craft beers of the Lima market: the presence of exotic fruits, fruity smell, presence of Andean cereals and high alcoholic grade, and, based on these characteristics, a prototype of craft beer was developed. By using Napping®-UFP, consumers positioned and described the six samples of Peruvian craft beers (five commercial brands and the prototype), we found that the prototype developed showed floral smell, herbal odor, fruity smell, light golden color, bubbly, exotic fruits, and high alcoholic grade. The EPM showed that 80% of consumers scored the prototype with a high grade of taste. Finally, putting together these techniques turns out to be useful in obtaining products that are highly accepted by the consumer and this methodology could be applied to other products.
References
Antúnez, L., Vidal, L., De Saldamando, L., Giménez, A., & Ares, G. (2017). Comparison of consumer-based methodologies for sensory characterization: Case study with four sample sets of powdered drinks. Food Quality and Preference, 56, 149–163. doi:10.1016/j.foodqual.2016.09.013
AOAC. (2016). Official Methods of Analysis of Association of AOAC International. (G. W. Latimer, Ed.) (20th ed.). Maryland.
Aquilani, B., Laureti, T., Poponi, S., & Secondi, L. (2015). Beer choice and consumption determinants when craft beers are tasted: An exploratory study of consumer preferences. Food Quality and Preference, 41, 214–224. doi:10.1016/j.foodqual.2014.12.005
Ares, G., Antúnez, L., Bruzzone, F., Vidal, L., Giménez, A., Pineau, B., … Jaeger, S. R. (2015). Comparison of sensory product profiles generated by trained assessors and consumers using CATA questions: Four case studies with complex and or similar samples. Food Quality and Preference, 45, 75–86. doi:10.1016/j.foodqual.2015.05.007
Barth-Haas Group. (2021). World beer production. Statista. https://www.statista.com/statistics/270275/worldwide-beer-production/.
Blackmore, H., Hidrio, C., & Yeomans, M. R. (2022). How sensory and hedonic expectations shape perceived properties of regular and non-alcoholic beer. Food Quality and Preference, 99, 104562.
Bruzzone, F. (2014). Aplicación de metodologías de caracterización sensorial con consumidores en el desarrollo de postres lácteos funcionales. Universidad de la República Aplicación.
Cadoret, M., & Husson, F. (2013). Construction and evaluation of confidence ellipses applied at sensory data. Food Quality and Preference, 28(1), 106–115. doi:10.1016/j.foodqual.2012.09.005
Carvalho, D. O., Øgendal, L. H., Andersen, M. L., & Guido, L. F. (2016). High molecular weight compounds generated by roasting barley malt are pro-oxidants in metal-catalyzed oxidations. European Food Research and Technology, 242(9), 1545–1553. doi:10.1007/s00217-016-2655-7
Chen, Y. H., & Su, C. T. (2006). A Kano-CKM model for customer knowledge discovery. Total Quality Management and Business Excellence, 17(5), 589–608. doi:10.1080/14783360600588158
Chollet, S., Lelièvre, M., Abdi, H., & Valentin, D. (2011). Sort and beer: Everything you wanted to know about the sorting task but did not dare to ask. Food Quality and Preference, 22, 507–520. doi:10.1016/j.foodqual.2011.02.004
Coghe, S., Gheeraert, B., Michiels, A., & Delvaux, F. R. (2006). Development of maillard reaction related characteristics during malt roasting. Journal of the Institute of Brewing, 112(2), 148–156. doi:10.1002/j.2050-0416.2006.tb00244.x
De Azevêdo, J. C. S., Fujita, A., de Oliveira, E. L., Genovese, M. I., & Correia, R. T. P. (2014). Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: A bioactive-rich Amazonian powder with functional attributes. Food Research International, 62, 934–940. doi:10.1016/j.foodres.2014.05.018
Dehlholm, C., Brockhoff, P. B., Meinert, L., Aaslyng, M. D., & Bredie, W. L. P. (2012). Rapid descriptive sensory methods - Comparison of Free Multiple Sorting, Partial Napping, Napping, Flash Profiling and conventional profiling. Food Quality and Preference, 26, 267–277. doi:10.1016/j.foodqual.2012.02.012
Delarue, J., Lawlor, J. Ben, & Rogeaux, M. (2015). Rapid Sensory Profi ling Techniques and Related Methods. Cambridge: Woodhead Publishing.
Escofier, B., & Pagès, J. (1998). Analyses factorielles simples et multiples. Dunod, Paris, 284.
Euromonitor International. (2019). Beer in Perú. Retrieved from https://www.euromonitor.com/beer-in-peru/report
Ferreira, I. M. P. L. V. O., Jorge, K., Nogueira, L. C., Silva, F., & Trugo, L. C. (2005). Effects of the combination of hydrophobic polypeptides, iso-α acids, and malto-oligosaccharides on beer foam stability. Journal of Agricultural and Food Chemistry, 53(12), 4976–4981. https://doi.org/10.1021/jf047796w
Giacalone, D. (2013). Consumers’ perception of novel beers: sensory, affctive, and cognitive-contextual aspects. University of Copenhagen.
Giacalone, D., Ribeiro, L. M., & Frøst, M. B. (2013). Consumer-Based Product Profiling: Application of Partial Napping® for Sensory Characterization of Specialty Beers by Novices and Experts. Journal of Food Products Marketing, 19(3), 201–218. doi:10.1080/10454446.2013.797946
Guinard, J. X., Uotani, B., & Schlich, P. (2001). Internal and external mapping of preferences for commercial lager beers: Comparison of hedonic ratings by consumers blind versus with knowledge of brand and price. Food Quality and Preference, 12, 243–255. doi:10.1016/S0950-3293(01)00011-8
Hahn, C. D., Lafontaine, S. R., Pereira, C. B., & Shellhammer, T. H. (2018). Evaluation of Nonvolatile Chemistry Affecting Sensory Bitterness Intensity of Highly Hopped Beers. Journal of Agricultural and Food Chemistry, 66(13), 3505–3513. doi:10.1021/acs.jafc.7b05784
INACAL (Instituto Nacional de calidad). (2015). Cerveza. Alcohol en cerveza por destilación. Lima, Perú.
INACAL (Instituto Nacional de calidad). (2016a). Cerveza. Determinación de pH en cerveza. Lima, Perú.
INACAL (Instituto Nacional de calidad). (2016b). Cerveza. Método de referencia para la determinación de amargor en cervezas. Lima, Perú.
INACAL (Instituto Nacional de calidad). (2016c). Cerveza. Método espectrofotométrico para la determinación del color. Lima, Perú.
Kano, N., Seraku, N., Takahashi, F., & Tshuji, S. (1984). Attractive quality and must-be quality. Journal of Japanese Society for Quality Control, 41(2), 165–186.
Kemp, S. E., Hort, J., & Hollowood, T. (2018). Descriptive analysis in sensory evaluation. New York: John Wiley & Sons, Inc.
Kobayashi, M.; Benassi, M. 2012. Caracterização sensorial de cafés solúveis comerciais por Perfil Flash. Semina: Ciências Agrárias. 33(2):3081-3092.
Lawless, H., & Heymann, H. (2010). Sensory Evaluation of Food (2nd ed.). New York: Springer.
Lehnhardt, F., Steiner, J., Gastl, M., & Becker, T. (2018). Prediction power and accuracy of forced ageing – Matching sensory and analytical results for lager beer. BrewingScience, 71, 39–48. doi:10.23763/BrSc18-05lenhardt
Le, M. T. (2015). Réflexions méthodologiques autour du Napping : vers une intégration du comportement du sujet dans l’ analyse des données de Napping. Retrieved from https://tel.archives-ouvertes.fr/tel-01534044
Le, S., & Husson, F. (2008). SENSOMINER : A Package for sensory data analysis. Journal of Food Science, 23(1), 14–25. doi:https://doi.org/10.1111/j.1745-459X.2007.00137.x
Liñan-Pérez, J. F. (2019). Aplicación de los métodos kano y cata para el desarrollo de brownie libre de gluten.
Llinares, C., & Page, A. F. (2011). Kano’s model in Kansei Engineering to evaluate subjective real estate consumer preferences. International Journal of Industrial Ergonomics, 41(3), 233–246. doi:10.1016/j.ergon.2011.01.011
Louw, L., Malherbe, S., Naes, T., Lambrechts, M., van Rensburg, P., & Nieuwoudt, H. (2013). Validation of two Napping® techniques as rapid sensory screening tools for high alcohol products. Food Quality and Preference, 30(2), 192–201. doi:10.1016/j.foodqual.2013.05.016
Machado, J. C., Martins, Z. E., & Ferreira, I. M. (2023). Dynamic sensory analysis by Temporal Dominance of Sensations paired with dynamic liking and wanting methodologies to understand the consumers’ preference between two beer styles enriched with elderberries. LWT, 173, 114266.
Maeda, R. N., & Andrade, J. S. (2003). Aproveitamento do camu-camu (Myrciaria dubia) para produção de bebida alcoólica fermentada. Acta Amazonica, 33(3), 489–498. doi:10.1590/s0044-59672003000300014
Malowicki, M. G., & Shellhammer, T. H. (2005). Isomerization and degradation kinetics of hop (Humulus lupulus) acids in a model wort-boiling system. Journal of Agricultural and Food Chemistry, 53(11), 4434–4439. doi:10.1021/jf0481296
Martínez, A., Vegara, S., Herranz-López, M., Martí, N., Valero, M., Micol, V., & Saura, D. (2017). Kinetic changes of polyphenols, anthocyanins and antioxidant capacity in forced aged hibiscus ale beer. Journal of the Institute of Brewing, 123(1), 58–65. doi:10.1002/jib.387
Matzler, K., Bailom, F., Sauerwein, E., & Hinterhuber, H. H. (1996). How to delight your customers. Journal of Product & Brand Management, 5(2), 6–18. doi:10.1108/10610429610119469
Maye, J. P., Smith, R., & Leker, J. (2016). Master Brewers Association of the Americas, Humulinone Formation in Hops and Hop Pellets and Its Implications for Dry Hopped Beers. Master Brewer Asociation of America, 53(1), 23–27.
Mayhew, E., Schmidt, S., & Lee, S. Y. (2016). Napping-Ultra Flash Profile as a Tool for Category Identification and Subsequent Model System Formulation of Caramel Corn Products. Journal of Food Science, 00(0), 51–59. doi:10.1111/1750-3841.13338
Meilgaard, M. C., Dalgliesh, C. E., & Clapperton, J. F. (1979). Beer Flavour Terminology. Journal of the Institute of Brewing, 85(1), 38–42. doi:10.1002/j.2050-0416.1979.tb06826.x
Meilgaard, Morten C, Civille, G. V., & Carr, B. T. (2016). Sensory Evaluation Techniques (5th ed.). Boca Raton: CRC Press, Taylor & Francis Group.
Meneses, J. E. (2017). Optimización de los parámetros de osmodeshidratación y secado por convección para la retención de carotenos del zapallo loche (Cucúrbita moschata Dutch.). Universidad Señor de Sipán.
Mora, M., Giussani, B., Pagliarini, E., & Chaya, C. (2019). Improvement of an emotional lexicon for the evaluation of beers. Food Quality and Preference, 71, 158–162. doi:10.1016/j.foodqual.2018.06.007
Nijman, M., James, S., Dehrmann, F., Smart, K., Ford, R., & Hort, J. (2019). The effect of consumption context on consumer hedonics, emotional response and beer choice. Food Quality and Preference, 74, 59–71. doi:10.1016/j.foodqual.2019.01.011
Oliver, P., Cicerale, S., Pang, E., & Keast, R. (2018). Comparison of Quantitative Descriptive Analysis to the Napping methodology with and without product training. Journal of Sensory Studies, 33(3), 1–11. doi:10.1111/joss.12331
O’Sullivan, M. (2017). A Handbook for Sensory and Consumer-Driven New Product Development. Cambridge: Woodhead Publishing.
Pagès, J. (2003). Recueil direct de distances sensorielles: application à l’évaluation de dix vins blancs du Val-de-Loire. Sciences Des Aliments, 23, 679–688. doi:10.3166/sda.23.679-688
Pagès, J. (2005). Collection and analysis of perceived product inter-distances using multiple factor analysis : Application to the study of 10 white wines from the Loire Valley. Food Quality and Preference, 16, 642–649. doi:10.1016/j.foodqual.2005.01.006
Perrin, L., & Pagès, J. (2009). Construction of a product space from the ultra-flash profiling method: Application to 10 red wines from the loire valley. Journal of Sensory Studies, 24(3), 372–395. doi:10.1111/j.1745-459X.2009.00216.x
Perrin, L., Symoneaux, R., Maître, I., Asselin, C., Jourjon, F., & Pagès, J. (2008). Comparison of three sensory methods for use with the Napping® procedure: Case of ten wines from Loire valley. Food Quality and Preference, 19, 1–11. doi:10.1016/j.foodqual.2007.06.005
Prado, R., Gastl, M., & Becker, T. (2023). Influence of kilned specialty malt odorant markers on the aroma composition and sensory profile of beer. LWT, 173, 114195.
Puma-Isuiza, G. G., & Núñez-Saavedra, C. (2018). Desarrollo de hot-dog a base de carne de pollo (Gallus gallus) mediante la Ingeniería Kansei Tipo II. Anales Científicos, 79(1), 201–209. doi:http://dx.doi.org/10.21704/ac.v79i1.1164
Santos, B. A., Pollonio, M. A. R., Cruz, A. G., Messias, V. C., Monteiro, R. A., Oliveira, T. L. C., … Bolini, H. M. A. (2013). Ultra-flash profile and projective mapping for describing sensory attributes of prebiotic mortadellas. Food Research International, 54, 1705–1711. doi:10.1016/j.foodres.2013.09.022
Sauerwein, E., Bailom, F., Matzler, K., & Hinterhuber, H. H. (1996). The Kano model: How to delight your customers. In IX. International Working Seminar on Production Economics (Vol. I, pp. 313–327). Innsbruck.
Simpson, W. J. (2016). Sensory Analysis in the Brewery. In C. W. Bamforth (Ed.), Brewing Materials and Processes: A Practical Approach to Beer Excellence (pp. 257–289). California: Academic Press. doi:10.1016/B978-0-12-799954-8.00013-7
Varela, P., & Ares, G. (2014). Novel Techniques in Sensory Characterization and Consumer Profiling. Boca Raton: CRC Press. doi:https://doi.org/10.1201/b16853
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Scientia Agropecuaria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).