Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels
DOI:
https://doi.org/10.17268/sci.agropecu.2023.034Keywords:
Weevil, corn, convolutional neural networks, EcuadorAbstract
The article explores the use of convolutional neural networks, specifically ResNet-50, to detect weevils in corn kernels. Weevils are a major pest of stored maize and can cause significant yield and quality losses. The study found that the ResNet-50 model was able to distinguish with high precision between weevil-infested corn kernels and healthy kernels, achieving values of 0.9464 for precision, 0.9310 for sensitivity, 0.9630 for specificity, 0.9469 for quality index, 0.9470 for the area under the curve (AUC) and 0.9474 for the F-score. The model was able to recognize nine out of ten weevil-free corn kernels using a minimal number of training samples. These results demonstrate the efficiency of the model in the accurate detection of weevil infestation in maize grains. The model's ability to accurately identify weevil-affected grains is critical to taking rapid action to control the spread of the pest, which can prevent significant economic losses and preserve the quality of stored corn. Research suggests that the use of ResNet-50 offers an efficient and low-cost solution for the early detection of weevil infestation in corn kernels. These models can quickly process large amounts of imaging data and perform accurate analysis, making it easy to identify affected grains.
References
Abiyev, R. H., & Maaitah, M. K. S. (2018). Deep Convolutional Neural Networks for Chest Diseases Detection. Journal of Healthcare Engineering, 2018. doi:10.1155/2018/4168538.
Aladhadh, S., Habib, S., Islam, M., Aloraini, M., Aladhadh, M., & Al-Rawashdeh, H. S. (2022). An Efficient Pest Detection Framework with a Medium-Scale Benchmark to Increase the Agricultural Productivity. Sensors, 22(24), 9749. doi:10.3390/s22249749.
Alchetron (2022). Maize weevil. https://alchetron.com/Maize-weevil.
Altuntaş, Y., Cömert, Z., & Kocamaz, A. F. (2019). Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach. Computers and Electronics in Agriculture, 163, 104874. doi:10.1016/j.compag.2019.104874.
An, J., Li, W., Li, M., Cui, S., & Yue, H. (2019). Identification and classification of maize drought stress using deep convolutional neural network. Symmetry, 11(2), 256. doi:10.3390/sym11020256.
Baoua, I. B., Amadou, L., Ousmane, B., Baributsa, D., & Murdock, L. L. (2014). PICS bags for post-harvest storage of maize grain in West Africa. Journal of Stored Products Research, 58, 20–28. doi:10.1016/j.jspr.2014.03.001.
Basir, M. S., Chowdhury, M., Islam, M. D., & Ashik-E-Rabbani, M. (2021). Artificial neural network model in predicting yield of mechanically transplanted rice from transplanting parameters in Bangladesh. Journal of Agriculture and Food Research, 5, 100186. doi:10.1016/j.jafr.2021.100186.
Bisong, E. (2019). Building Machine Learning and Deep Learning Models on Google Cloud Platform. 1st edn, Building Machine Learning and Deep Learning Models on Google Cloud Platform. 1st edn. Ottawa: Apress. doi:10.1007/978-1-4842-4470-8.
Bohinc, T., Horvat, A., Andrić, G., Pražić Golić, M., Kljajić, P., & Trdan, S. (2020). Natural versus synthetic zeolites for controlling the maize weevil (Sitophilus zeamais)–like Messi versus Ronaldo? Journal of Stored Products Research, 88, 101639.
Camardo, M., Mazzoni, M., & Battilani, P. (2021). Machine Learning for Predicting Mycotoxin Occurrence in Maize. Frontiers in Microbiology, 12, 1–10. doi:10.3389/fmicb.2021.661132.
Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D. (2022). Explainable deep convolutional neural networks for insect pest recognition. Journal of Cleaner Production, 371, 133638. doi:10.1016/j.jclepro.2022.133638.
da Silva, C. B., Silva, A. A. N., Barroso, G., Yamamoto, P. T., Arthur, V., Toledo, C. F. M., & Mastrangelo, T. de A. (2021). Convolutional neural networks using enhanced radiographs for real-time detection of Sitophilus zeamais in maize grain. Foods, 10(4), 879. doi:10.3390/foods10040879.
de Carvalho, M. L., Rezende Leite, E., Carvalho, G. A., França-Silva, F., Bernardes de Andrade, D., & Marques, E. R. (2019). The Compared Efficiency of the Traditional Method, Radiography without Contrast and Radiography with Contrast in the Determination of Infestation by Weevil (Sitophilus zeamais) in Maize Seeds. Insects, 10(6), 156.
FAO (2017). El futuro de la alimentación y la agricultura: Tendencias y desafíos. Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/3/i6881s/i6881s.pdf
Fan, J., Zheng, J., Wu, L., & Zhang, F. (2021). Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agricultural Water Management, 245, 106547. doi:10.1016/j.agwat.2020.106547.
Goodfellow, I., Bengio, Y., & Courville, A. (2017) Deep Learning, The MIT Press. Londres: MIT Press. doi:10.1017/CBO9781107415324.004.
Ileke, K. D., Idoko, J. E., Ojo, D. O., & Adesina, B. C. (2020). Evaluation of botanical powders and extracts from Nigerian plants as protectants of maize grains against maize weevil, Sitophilus zeamais (Motschulsky) [Coleoptera: Curculionidae]. Biocatal. Agric. Biotechnol., 27, 101702.
Javanmardi, S., Miraei Ashtiani, S.-H., Verbeek, F. J., & Martynenko, A. (2021). Computer-vision classification of corn seed varieties using deep convolutional neural network’, Journal of Stored Products Research., 92, 101800. doi:10.1016/j.jspr.2021.101800.
Kamilaris, A., & Prenafeta, F. X. (2018). A review of the use of convolutional neural networks in agriculture. Journal of Agricultural Science, 156(3), 312–322. doi:10.1017/S0021859618000436.
Kienbaum, L., Correa Abondano, M., Blas, R., & Schmid, K. (2021). DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics. Plant Methods, 17, 91. doi:10.1186/s13007-021-00787-6.
Li, L., Lv, Ch., Yuan, Y., & Zhao, B. (2021). Maize residue segmentation using Siamese domain transfer network. Computers and Electronics in Agriculture, 187, 106261. doi:10.1016/j.compag.2021.106261.
Mamoon-ur-Rashid, M., Riaz-ud-din, Tariq, M., Khan, A. A., Latif, A., Naeem, M., & Khan, I. (2021). Bioactivity of hexane plant extracts against maize weevil (Sitophilus zeamais Motschulsky) (Coleoptera: Curculionidae) on stored maize. Intl J Agric Biol, 26, 617‒624.
Mi, C., Zhao, Ch., Deng, Q., & Deng, X. (2021). Prediction of chilling damage risk in maize growth period based on probabilistic neural network approach. International Journal of Agricultural and Biological Engineering, 14(2), 120–125. doi:10.25165/J.IJABE.20211402.5732.
Michelucci, U. (2018). Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks. Dübendorf, Switzerland. doi:https://doi.org/10.1007/978-1-4842-3790-8.
Ministerio de Agricultura y Ganadería, (MAG) (2019). Ficha del cultivo de Maíz duro seco (Zea mays L.). Quito-Ecuador, p. 1. http://sipa.agricultura.gob.ec/index.php/cifras-agroproductivas.
Muhaisin, M. M., & Rahman, T. (2019). Application of Game Theory for Big Data Analytics, Data Analytics. doi:10.1201/9780429446177-8.
Ni, C., Wang, D., Vinson, R., Holmes, M., & Tao, Y. (2019). Automatic inspection machine for maize kernels based on deep convolutional neural networks. Biosystems Engineering, 178, 131–144. doi:10.1016/j.biosystemseng.2018.11.010.
Ngom, D., Fauconnier, M. L., Malumba, P., Thiaw, C., Brévault, T., & Sembène, M. (2021). Morphophysical and biochemical traits involved in maize grain varietal susceptibility to the maize weevil, Sitophilus zeamais (Coleoptera, Curculionidae). Biotechnologie, Agronomie, Société et Environnement, 25(1), 45-56.
Nurma Yulita, I., Hidayat, A., Setiawan Abdullah, A., & Paulus, E. (2020). Combining Fuzzy Clustering and Hidden Markov Models for Sundanese Speech Recognition. Journal of Physics: Conference Series, 1028, 012239.
Nyéki, A., Kerepesi, C., Daróczy, B., Benczúr, A., Milics, G., Nagy, J., Harsányi, E., Kovács, A. J., & Neményi, M. (2021). Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods. Precision Agriculture, 22(5), 1397–1415. doi:10.1007/s11119-021-09833-8.
Pashaei, M., Kamangir, H., Starek, M. J., & Tissot, P. (2020). Review and evaluation of deep learning architectures for efficient land cover mapping with UAS hyper-spatial imagery: A case study over a wetland. Remote Sensing, 12(6), 959. doi:10.3390/rs12060959.
Peschiutta, M. L., Brito, V. D., Achimón, F., Zunino, M. P., Usseglio, V. L., & Zygadlo, J. A. (2019). New insecticide delivery method for the control of Sitophilus zeamais in stored maize. Journal of Stored Products Research, 83, 185-190.
Rau, T. S., Bern, C. J., Brumm, T. J., Barnes, R. B., Bbosa, D., & Maier, D. E. (2021). Evaluation of stirring to suppress weevils in stored maize. Journal of Stored Products Research, 93, 101849.
Rimal, K., Shah, K. B., & Jha, A. K. (2023). Advanced multi-class deep learning convolution neural network approach for insect pest classification using TensorFlow. International Journal of Environmental Science and Technology, 20(4), 4003–4016. doi:10.1007/s13762-022-04277-7.
Sibiya, M., & Sumbwanyambe, M. (2019). A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional Neural Networks. AgriEngineering, 1(1), 119–131. doi:10.3390/agriengineering1010009.
Sibiya, M., & Sumbwanyambe, M. (2021). Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning. Pathogens, 10(2), 131. doi:10.3390/pathogens10020131.
Stathers, T. E., Arnold, S. E. J., Rumney, C. J., & Hopson, C., (2020). Measuring the nutritional cost of insect infestation of stored maize and cowpea, Food Security: The Science, Sociology and Economics of Food Production and Access to Food, 12(2), 285-308.
Stuhl, Ch. J. (2019). Does prior feeding behavior by previous generations of the maize weevil (Coleoptera: Curculionidae) determine future descendants feeding preference and ovipositional suitability? Florida Entomologist, 102(2), 366-372.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929-1958.
Waheed, A., Goyal, M., Gupta, D., Khanna, A., Ella Hassanien, A., & Mohan Pandey, H. (2020). An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Computers and Electronics in Agriculture, 175, 105456. doi:10.1016/j.compag.2020.105456.
Wang, G., Sun, Y., & Wang, J. (2017). Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning. Computational Intelligence and Neuroscience, 2917536. doi:10.1155/2017/2917536.
White, T. (2018) Hadoop. The definitive guide. Storage and analysis at internet scale. 4th Editio. Edited by Oreilly. Sebastopol-USA. http://oreilly.com/catalog/errata.csp?isbn=9781491901632.
Xia, D., Chen, P., Wang, B., Zhang, J., & Xie, Ch. (2018). Insect detection and classification based on an improved convolutional neural network. Sensors (Switzerland), 18(12), 4169. doi:10.3390/s18124169.
Xu, Y., Zhao, B., Zhai, Y., Chen, Q., & Zhou, Y. (2021). Maize Diseases Identification Method Based on Multi-Scale Convolutional Global Pooling Neural Network. IEEE Access, 9, 27959–27970. doi:10.1109/ACCESS.2021.3058267.
Yang, W., Nigon, T., Hao, Z., Dias Paiao, G., Fernández, F. G., Mulla, D., & Yang, C. (2021). Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Computers and Electronics in Agriculture, 184, 106092 doi:10.1016/j.compag.2021.106092.
Zhang, J., Ma, Q., Cui, X., Guo, H., Wang, K., & Zhu, D. (2020). High-throughput corn ear screening method based on two-pathway convolutional neural network. Computers and Electronics in Agriculture, 175, 105525. doi:10.1016/j.compag.2020.105525.
Zhang, X., Qiao, Y., Meng, F., Fan, C., & Zhang, M. (2018). Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access, 6, 30370–30377. doi:10.1109/ACCESS.2018.2844405.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Scientia Agropecuaria
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).