Analysis of forest cover in Parque Nacional Tingo María (Peru) using the random forest algorithm

Authors

  • Ronald Puerta Escuela Profesional de Ingeniería en Recursos Naturales Renovables. Universidad Nacional Agraria de la Selva, Tingo María.
  • José Iannacone Laboratorio de Ecología y Biodiversidad Animal (LEBA). Grupo de Investigación de Sostenibilidad Ambiental (GISA). Escuela Universitaria de posgrado (EUPG). Universidad Nacional Federico Villarreal (UNFV), Lima.

DOI:

https://doi.org/10.17268/sci.agropecu.2023.025

Keywords:

Alto Huallaga, fragmentation, protected area, rate of change, Sentinel-2

Abstract

The establishment of natural protected areas is one of the most effective strategies to conserve forests and their biodiversity; however, the uncontrolled advance of deforestation resulting from the change of use to expand the agricultural frontier has become a threat to these intangible areas. This research aimed to analyze the dynamics of forest cover in Parque Nacional Tingo María (PNTM) and its buffer zone (ZA) located in the high jungle of the Huánuco region of Peru. The main input was Sentinel-2 images that were classified using the Random Forest algorithm. As a result, coverage maps were obtained for the study area corresponding to the years 2017, 2019, 2021 and 2023, achieving considerable thematic accuracy. During the evaluation periods, the rates of change from forest to non-forest within the PNTM presented low values -0.26% (2017 - 2019); -1.24% (2019 - 2021) and -0.02% (2021 - 2023). While the forests in the ZA have undergone a dynamic transition, with rates of change of -2.97%; -4.39% and -1.15% derived from land use change. The landscape metrics suggest that the forests of the PNTM are moderately fragmented, and the forests of the ZA are strongly fragmented, which leads to the conclusion that the protected natural area has fulfilled its objective of maintaining vegetation cover.

References

Aguirre, J., Guerrero, E., & Campana, Y. (2021). How effective are protected natural areas when roads are present? An analysis of the Peruvian case. Environmental Economics and Policy Studies, 23(4), 831-859.

Bera, D., Chatterjee, N. D., Bera, S., Ghosh, S., & Dinda, S. (2023). Comparative performance of Sentinel-2 MSI and Landsat-8 OLI data in canopy cover prediction using Random Forest model: Comparing model performance and tuning parameters. Advances in Space Research, 71(11), 4691-4709.

Bonacic, C., Arévalo, C., Ibarra, J. T., & Laker, J. (2022). The Importance of Protected Areas in Mitigating Climate Change and Conserving Ecosystems in Latin America and the Caribbean. In The Food Security, Biodiversity, and Climate Nexus (pp. 35-53). Cham: Springer International Publishing.

Bratic, G., & Brovelli, M. A. (2022). Crowdsourcing for deforestation detection in the Amazon. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 231-238.

Cengiz, A. V. C. I., Budak, M., Yağmur, N., & Balçik, F. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1-10.

Céspedes, J., Sylvester, J. M., Pérez-Marulanda, L., Paz-Garcia, P., Reymondin, L., Khodadadi, et al., (2022). Has global deforestation accelerated due to the COVID-19 pandemic?. Journal of Forestry Research, 1-13.

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 [software]. Geoscientific Model Development, 8, 1991-2007.

Cotrina, A., Bandopadhyay, S., Rojas, N., Banerjee, P., Torres, C., & Oliva, M. (2021). Peruvian Amazon disappearing: Transformation of protected areas during the last two decades (2001–2019) and potential future deforestation modelling using cloud computing and MaxEnt approach. Journal for Nature Conservation, 64, 126081.

Da Ponte, E., Alcasena, F., Bhagwat, T., Hu, Z., Eufemia, L., Turetta, A., et al (2023). Assessing wildfire activity and forest loss in protected areas of the Amazon basin. Applied Geography, 157, 102970.

Eskandari, S., & Sarab, S. (2022). Mapping land cover and forest density in Zagros forests of Khuzestan province in Iran: A study based on Sentinel-2, Google Earth and field data. Ecological Informatics, 101727.

ESA. (2023). Copernicus. S-1, S-2, S-3: European Space Agency.

FAO. (1996). Forest resources assessment 1990. Survey of tropical forest cover and study of change processes.

FAO. (2022). El estado de los bosques del mundo 2022. Vías forestales hacia la recuperación verde y la creación de economías inclusivas, resilientes y sostenibles.

Fritz, S., Laso Bayas, J., See, L., Schepaschenko, D., Hofhansl, F., Jung, M., et al., (2022). A continental assessment of the drivers of tropical deforestation with a focus on protected areas. Frontiers in Conservation Science, 3, 13.

Gutkin, N., Uwizeyimana, V., Somers, B., Muys, B., & Verbist, B. (2023). Supervised Classification of Tree Cover Classes in the Complex Mosaic Landscape of Eastern Rwanda. Remote Sensing, 15(10), 2606.

Hänggli, A., Levy, S., Armenteras Pascual, D., Bovolo, I., Brandao, J., Rueda, X., & Garrett, R. D. (2023). A systematic comparison of deforestation drivers and policy effectiveness across the Amazon biome. Environmental Research Letters.

IGNE. (2020). El programa Copernicus para la monitorización del territorio y los objetivos del desarrollo sostenible. Centro Nacional de Información Geográfica.

Jaramillo, J., Rivas, C., Oteros, J., & Navarro-Cerrillo, R. (2023). Forest Fragmentation and Landscape Connectivity Changes in Ecuadorian Mangroves: Some Hope for the Future? Applied Sciences, 13(8), 5001.

Jia, M., Wang, Z., Mao, D., Ren, C., Song, K., Zhao, C., et al (2023). Mapping global distribution of mangrove forests at 10-m resolution. Science Bulletin.

Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with Sentinel 2 and deep learning. In 2021 IEEE international geoscience and remote sensing symposium IGARSS (pp. 4704-4707). IEEE.

Landis, J., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159- 174.

Maso, J., Zabala, A., & Serral, I. (2023). Earth Observations for Sustainable Development Goals. Remote Sensing, 15(10), 2570.

Mastrorosa, S., Crespi, M., Congedo, L., & Munafò, M. (2023). Land Consumption Classification Using Sentinel 1 Data: A Systematic Review. Land, 12(4), 932.

Mi, C., Ma, L., Yang, M., Li, X., Meiri, S., et al. (2023). Global Protected Areas as refuges for amphibians and reptiles under climate change. Nature Communications, 14(1), 1389.

MINAM. (2023). Bosques y pérdida de bosques. Geobosques.

MINAM. (2014). Protocolo: Evaluación de la Exactitud Temática del Mapa de Deforestación. Dirección General de Ordenamiento Territorial. Primera Edición. Lima, Perú. pp. 13-32.

Moharram, M., & Sundaram, D. (2023). Land Use and Land Cover Classification with Hyperspectral Data: A comprehensive review of methods, challenges and future directions. Neurocomputing.

Peptenatu, D., Andronache, I., Ahammer, H., Radulovic, M., Costanza, J., Jelinek, H., et al., (2023). A new fractal index to classify forest fragmentation and disorder. Landscape Ecology, 1-21.

Pérez-Cutillas, P., Pérez-Navarro, A., Conesa-García, C., Zema, D. A., & Amado-Álvarez, J. P. (2023). What is going on within google earth engine? A systematic review and meta-analysis. Remote Sensing Applications: Society and Environment, 29, 100907.

Pham-Duc, B., Nguyen, H., Phan, H., & Tran-Anh, Q. (2023). Trends and applications of google earth engine in remote sensing and earth science research: a bibliometric analysis using scopus database. Earth Science Informatics, 1-17.

Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, 12(14), 2291.

Rojas, E., Zutta, B. R., Velazco, Y. K., Montoya-Zumaeta, J. G., & Salvà-Catarineu, M. (2021). Deforestation risk in the Peruvian Amazon basin. Environmental Conservation, 48(4), 310-319.

SERNANP. (2023). Lista Oficial de las Áreas Naturales Protegidas. Servicio Nacional de Áreas Naturales Protegidas.

SERNANP. (2022). Plan Maestro 2022-2026 del Parque Nacional Tingo María. Servicio Nacional de Áreas Naturales Protegidas. 61 p.

Song, X. P. (2023). The future of global land change monitoring. International Journal of Digital Earth, 16(1), 2279-2300.

Sousa, M. V., Melo, S. N., Souza, J. C., Silva, C. F., Feitosa, Y., & Matias, L. F. (2023). Importance of Protected Areas by Brazilian States to Reduce Deforestation in the Amazon. ISPRS International Journal of Geo-Information, 12(5), 190.

Tafur, V., Esenarro, D., Guillen, R., & Reyna, S. (2022). Deforestation in Peru and strategic plan for its reduce Amazonian forests. 3c Tecnología: glosas de innovación aplicadas a la pyme, 11(1), 97-111.

Tariq, A., Jiango, Y., Li, Q., Gao, J., Lu, L., Soufan, W., et al (2023). Modelling, mapping and monitoring of forest cover changes, using support vector machine, kernel logistic regression and naive bayes tree models with optical remote sensing data. Heliyon, 9(2).

Toosi, N. B., Soffianian, A. R., Fakheran, S., & Waser, L. T. (2022). Mapping disturbance in mangrove ecosystems: Incorporating landscape metrics and PCA-based spatial analysis. Ecological Indicators, 136, 108718.

Waldeland, A. U., Trier, Ø. D., & Salberg, A. B. (2022). Forest mapping and monitoring in Africa using Sentinel-2 data and deep learning. International Journal of Applied Earth Observation and Geoinformation, 111, 102840.

Zhang, C., Liu, Y., & Tie, N. (2023). Forest Land Resource Information Acquisition with Sentinel-2 Image Utilizing Support Vector Machine, K-Nearest Neighbor, Random Forest, Decision Trees and Multi-Layer Perceptron. Forests, 14(2), 254.

Zhen, S., Zhao, Q., Liu, S., Wu, Z., Lin, S., Li, J., & Hu, X. (2023). Detecting Spatiotemporal Dynamics and Driving Patterns in Forest Fragmentation with a Forest Fragmentation Comprehensive Index (FFCI): Taking an Area with Active Forest Cover Change as a Case Study. Forests, 14(6), 1135.

Published

2023-08-11

How to Cite

Puerta, R. ., & Iannacone, J. . (2023). Analysis of forest cover in Parque Nacional Tingo María (Peru) using the random forest algorithm . Scientia Agropecuaria, 14(3), 291-300. https://doi.org/10.17268/sci.agropecu.2023.025

Issue

Section

Original Articles