Extraction of proteins secreted by the phytopathogen Macrophomina phaseolina: Selection of an efficient method that includes stimulation with its host tissue

Authors

  • Andrea Benegas Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción
  • Alberto A. Cubilla-Ríos Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción
  • M. Eugenia Flores-Giubi Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción
  • Javier E. Barúa 1Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción
  • Ma. Cristina Romero-Rodríguez Universidad Nacional de Asunción

DOI:

https://doi.org/10.17268/sci.agropecu.2022.017

Keywords:

charcoal rot, necrotrophic fungi, protein extraction, protein profile, SDS-PAGE

Abstract

The globally distributed necrotrophic fungus Macrophomina phaseolina is the causal agent of economically important crop diseases such as soybean charcoal rot. This fungus secretes a wide variety of proteins and metabolites that allow it to invade the plant and initiate the infection process. The role of fungi secreted proteins with hydrolytic activity in the infection process has been extensively studied; proteins without enzymatic activity could also play an important role in this process. The analysis of total proteins would allow to broaden the knowledge about this pathogen and establish more efficient strategies for its control. The objective of the present work was to evaluate three methods for the extraction of proteins secreted by M. phaseolina. The fungus was grown in potato dextrose broth (PDB) and Czapek-Dox (CZP) with and without soybean leaf supplementation. Proteins were extracted from the lyophilized filtrate of PDB medium using three extraction methods and analyzed by SDS-PAGE. The protein precipitation with trichloroacetic acid in acetone was selected because it showed a better resolution of the protein profile. The filtrate of M. phaseolina grown in PDB supplemented with soybean (MpPDBs) presented the highest yield of protein extraction of secreted proteins among all conditions evaluated. The protein profiles of PDB medium with and without supplementation showed seven differential bands, one of the specific, detected in MpPDBs. These results constitute a basis for studies on the implication of proteins secreted by the fungus in the infection process.

References

Abbas, H. K., Bellaloui, N., Butler, A. M., Nelson, J. L., Abou-Karam, M., & Shier, W. T. (2020). Phytotoxic responses of soybean (Glycine max L.) to botryodiplodin, a toxin produced by the charcoal rot disease fungus, Macrophomina phaseolina. Toxins, 12(1), 25.

Baird, R. E., & Brock, J. H. (1999). First report of Macrophomina phaseolina on cotton (Gossypium hirsutum) in Georgia. Plant Disease, 83(5), 487.

Bandara, Y. M. A. Y., Weerasooriya, D. K., Liu, S., & Little, C. R. (2018). The necrotrophic fungus Macrophomina phaseolina promotes charcoal rot susceptibility in grain sorghum through induced host cell-wall-degrading enzymes. Phytopathology, 108(8), 948-956.

Beas-Fernández R, De Santiago-De Santiago A, Hernández-Delgado S, & Mayek-Pérez N. (2006). Characterization of Mexican and non-Mexican isolates of Macrophomina phaseolina based on morphological characteristics, pathogenicity on bean seeds and endoglucanase genes. Journal of Plant Pathology, 88(1), 53-60.

Bhattacharya, D., Dhar, T. K., Siddiqui, K. A. I., & Ali, E. (1994). Inhibition of seed germination by Macrophomina phaseolina is related to phaseolinone production. Journal of Applied Bacteriology, 77(2), 129-133.

Bhattacharya G., Dhar T. K., Bhattacharyya F. K., & Siddiqui K. A. (1987). Mutagenic action of phaseolinone, a mycotoxin isolated from Macrophomina phaseolina. Australian Journal of Biological Sciences, 40(4), 349-353.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248-254.

Ceulemans, E., Ibrahim, H. M. M., Coninck, B. de, & Goossens, A. (2021). Pathogen effectors: exploiting the promiscuity of plant signaling hubs. Trends in Plant Science, 26(8), 780-795.

Dhar, T. K., Siddiqui, K. A. I, & Ali, E. (1982). Structure of Phaseolinone, a novel phytotoxin from Macrophomina phaseolina. Tetrahedron Letters, 23(51), 5459-5462.

Flores-Giubi, M. E., Brito-Argáez, L., García-Sosa, K., Escalante-Erosa, F., Islas-Flores, I., & Peña-Rodríguez, L. M. (2013). Optimization of culturing conditions of a strain of Phytophthora capsici pathogenic to habanero pepper (Capsicum chinense). Journal of Phytopathology, 161(11–12), 807-813.

Fuhlbohm, M. J., Ryley, M. J., & Aitken, E. A. B. (2013). Infection of mungbean seed by Macrophomina phaseolina is more likely to result from localized pod infection than from systemic plant infection. Plant Pathology, 62(6), 1271-1284.

González-Fernández, R., Aloria, K., Valero-Galván, J., Redondo, I., Arizmendi, J. M., & Jorrín-Novo, J. V. (2014). Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. Journal of Proteomics, 97, 195-221.

Gupta, G. K., Sharma, S. K., & Ramteke, R. (2012). Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). Journal of Phytopathology, 160(4), 167-180.

Islam, M., Haque, M., Islam, M., Emdad, E., Halim, A., et al. (2012). Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics, 13(1), 493.

Kaur, S., Dhillon, G. S., & Chauhan, V. B. (2013). Morphological and pathogenic variability in Macrophomina phaseolina isolates of pigeonpea (Cajanus cajan L.) and their relatedness using principle component analysis. Archives of Phytopathology and Plant Protection, 46(19), 2281-2293.

Khambhati, V. H., Abbas, H. K., Sulyok, M., Tomaso-Peterson, M., & Shier, W. T. (2020). First report of the production of mycotoxins and other secondary metabolites by Macrophomina phaseolina (Tassi) Goid. isolates from soybeans (Glycine max L.) symptomatic with charcoal rot disease. Journal of Fungi, 6(4), 332.

Khan, A. N., Shair, F., Malik, K., Hayat, Z., Khan, M. A., Hafeez, F. Y., & Hassan, M. N. (2017). Molecular identification and genetic characterization of Macrophomina phaseolina strains causing pathogenicity on sunflower and chickpea. Frontiers in Microbiology, 8

Koehler, A. M., & Shew, H. D. (2018). First report of charcoal rot of stevia caused by Macrophomina phaseolina in North Carolina. Plant Disease, 102(1), 241.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature, 227, 680-685.

Lai, M. W & Liou, R. F. (2018). Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica. Current Genetics, 64, 931-943.

Li, Y., Gai, Z., Wang, C., Li, P., & Li, B. (2021). Identification of mellein as a pathogenic substance of Botryosphaeria dothidea by UPLC-MS/MS analysis and phytotoxic bioassay. Journal of Agricultural and Food Chemistry, 69(30), 8471-8481.

Lu, L., Liu Y. Zhang, Z. (2020) Global characterization of GH10 family xylanase genes in Rhizoctonia cerealis and functional analysis of xylanase RcXYN1 during fungus infection. Wheat. International Journal of Molecular Sciences, 21(5), 1812.

Mahato, S., Siddiqui, K., Bhattacharya, G., Ghosal, T., Miyahara, K., Sholichin, M., & Kawasaki, T. (1987). Structure and stereochemistry of phaseolinic acid: A new acid from Macrophomina phaseolina. Journal of Natural Products, 50, 245-247.

Margalit, A., Carolan, J. C., Sheehan, D., & Kavanagh, K. (2020). The Aspergillus fumigatus secretome alters the proteome of Pseudomonas aeruginosa to stimulate bacterial growth: implications for co-infection. Molecular and Cellular Proteomics, 19(8), 1346-1359.

Martínez-Villarreal, R., Garza-Romero, T. S., Moreno-Medina, V. R., Hernández-Delgado, S., & Mayek-Pérez, N. (2016). Bases bioquímicas de la tolerancia al estrés osmótico en hongos fitopatógenos: el caso de Macrophomina phaseolina (Tassi) Goid. Revista Argentina de Microbiología, 48(4), 347-357.

Masi, M., Sautua, F., Zatout, R., Castaldi, S., Arrico, L., et al. (2021). Phaseocyclopentenones A and B, Phytotoxic Penta- and tetrasubstituted cyclopentenones produced by Macrophomina phaseolina, the causal agent of charcoal rot of soybean in Argentina. Journal of Natural Products, 84(2), 459-465.

Medina, M. L., Haynes, P. A., Breci, L., & Francisco, W. A. (2005). Analysis of secreted proteins from Aspergillus flavus. Proteomics, 5(12), 3153-3161.

Oh, Y., Robertson, S. L., Parker, J., Muddiman, D. C., & Dean, R. A. (2017). Comparative proteomic analysis between nitrogen supplemented and starved conditions in Magnaporthe oryzae. Proteome Science, 15(1), 1-12.

Paiva Negreiros, A., Sales Junior, R., León, M., de Assis Melo, N. J., Michereff, J. S., et al. (2019). Identification and pathogenicity of Macrophomina species collected from weeds in melon fields in Northeastern Brazil. Journal of Phytopathology, 167(6), 326-337.

Pandey, A. K., Burlakoti, R. R., Rathore, A., & Nair, R. M. (2020). Morphological and molecular characterization of Macrophomina phaseolina isolated from three legume crops and evaluation of mungbean genotypes for resistance to dry root rot. Crop Protection, 127, 104962.

Ramezani, M., Shier, W. T., Abbas, H., Tonos, J., Baird, R., & Sciumbato, G. L. (2007). Soybean charcoal rot disease fungus Macrophomina phaseolinain Mississippi produces the phytotoxin (-)-botryodiplodin but no detectable phaseolinone. Journal of Natural Products, 70(1), 128-129.

Ramos-Santos, C., Hoffmam, Z. B., de Matos-Martins V. P., Lopes de Oliveira, P. S., Ruller, R., Murakami, M. T. (2014). Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens. Protein Structure and Folding, 289(46), P32186-32200.

Reis, E. M., Boaretto, C., & Danelli, A. L. D. (2014). Macrophomina phaseolina: density and longevity of microsclerotia in soybean root tissues and free on the soil, and competitive saprophytic ability. Summa Phytopathologica, 40(2), 128-133.

Reyes-Franco, M., Hernández-Delgado, S., Beas-Fernández, R., Medina-Fernández, Simpson, J., & Mayek-Pérez, N. (2006). Pathogenic and Genetic Variability within Macrophomina phaseolina from Mexico and Other Countries. Journal of Phytopathology, 154(7-8), 447-453.

Reznikov, S., Vellicce, G. R., Mengistu, A., Arias, R. S., González, V., et al. (2018). Disease incidence of charcoal rot (Macrophomina phaseolina) on soybean in north-western Argentina and genetic characteristics of the pathogen. Canadian Journal of Plant Pathology, 40(3), 423-433.

Salvatore, M. M., Félix, C., Lima, F., Ferreira, V., Naviglio, D., et al. (2020). Secondary Metabolites Produced by Macrophomina phaseolina Isolated from Eucalyptus globulus. Agriculture, 10(3), 72.

Sarkar, T. S., Biswas, P., Ghosh, S. K., & Ghosh, S. (2014). Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph–host plant interactions. Plos One, 9(9), 1-17.

Shaukat, S. S., & Siddiqui, I. A. (2003). The influence of mineral and carbon sources on biological control of charcoal rot fungus, Macrophomina phaseolina by fluorescent pseudomonads in tomato. Letters in Applied Microbiology, 36(6), 392-398.

Singh, G., Kumar, A., Verma, M. K., Gupta, P., & Katoch, M. (2022). Secondary metabolites produced by Macrophomina phaseolina, a fungal root endophyte of Brugmansia aurea, using classical and epigenetic manipulation approach. Folia Microbiologica.

Sinha, N., Patra, S. K., Sarkar, T. S., & Ghosh, S. (2021). Secretome analysis identified extracellular superoxide dismutase and catalase of Macrophomina phaseolina. Archives of Microbiology, 204(1), 1-11.

Sinha, N., Patra, S. K., & Ghosh, S. (2022). Secretome analysis of Macrophomina phaseolina identifies an array of putative virulence factors responsible for charcoal rot disease in plants. Frontiers in Microbiology, 13, 623.

Suárez, M. B., Sanz, L., Chamorro, M. I., Rey, M., González, F. J., Llobell, A., & Monte, E. (2005). Proteomic analysis of secreted proteins from Trichoderma harzianum: Identification of a fungal cell wall-induced aspartic protease. Fungal Genetics and Biology, 42(11), 924-934.

Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual Review of Phytopathology, 54, 419-441.

Trigos, A., Reyna, S., & Matamoros, B. (1995). Macrophominol, a diketopiperazine from cultures of Macrophomina phaseolina. Phytochemistry, 40(6), 1697-1698.

Valledor, L., & Jorrín-Novo, J. V. (2011). Back to the basics: Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. Journal of Proteomics, 74(1), 1-18.

VanderMolen, K. M., Raja, H. A., El-Elimat, T., & Oberlies, N. H. (2013). Evaluation of culture media for the production of secondary metabolites in a natural products screening program. AMB Express, 3, 71.

Viejobueno, J., de los Santos, B., Camacho-Sanchez, M., Aguado, A., Camacho, M., & Salazar, S. M. (2022). Phenotypic variability and genetic diversity of the pathogenic fungus Macrophomina phaseolina from several hosts and host specialization in strawberry. Current Microbiology, 79(7), 1-15.

Wessel, D., & Flügge, U. I. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical Biochemistry, 138(1), 141-143.

Westphal, K. R., Heidelbach, S., Zeuner, E. J., Riisgaard-Jensen, M., Nielsen, M. E., et al. (2021). The effects of different potato dextrose agar media on secondary metabolite production in Fusarium. International Journal of Food Microbiology, 347, 109171.

Yang, F. E. N., Jensen, J. D., Svensson, B., Jørgensen, H. J. L., Collinge, D. B., & Finnie, C. (2012). Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat. Molecular Plant Pathology. 13(5), 445-453.

Published

2022-07-05

How to Cite

Benegas, A., Cubilla-Ríos, A. A., Flores-Giubi, M. E. ., Barúa, J. E., & Romero-Rodríguez, M. C. (2022). Extraction of proteins secreted by the phytopathogen Macrophomina phaseolina: Selection of an efficient method that includes stimulation with its host tissue. Scientia Agropecuaria, 13(2), 185-192. https://doi.org/10.17268/sci.agropecu.2022.017

Issue

Section

Original Articles