Biofertilizers and biostimulants for agricultural and aquaculture use: Bioprocesses applied to organic by-products of the fishing industry
DOI:
https://doi.org/10.17268/sci.agropecu.2021.067Keywords:
Fishing residues, effluent, organic fertilizer, hydrolyzate, live food, biofertilizer, biostimulant, circular economyAbstract
The development of products for human consumption with added value from hydrobiological resources generates remnants of the raw material that are classified as co-products, by-products and solid and liquid organic waste that, if not treated, cause a negative environmental impact. The use of these remnants for agricultural purposes is a reason for research because they have bioactive compounds and minerals of interest; Thus, the by-products have been used in bioprocesses that use eco-friendly methods such as aerobic biodegradation, fermentation, hydrolysis and extraction in the case of macroalgae. The products obtained from bioprocesses, depending on their composition of macronutrients, micronutrients, amino acids, microorganisms and bioactive compounds, can be considered as organic fertilizer and/or biostimulant, whose effect ranges from the improvement of growth and development in plants to the control of the biotic and abiotic stress in crops, so that they can grow without difficulties. Organic fertilizers derived from by-products and residual effluents from the fishing industry have adequate macronutrient (N, P and K) and micronutrient (Ca, Mg, S, B, Fe, Cu, Mn, Mo, Zn, and Cl) contents. for plants, as well as peptides and amino acids that are considered as biostimulants. On the other hand, the application of organic fertilizers and biostimulants covers various areas such as horticulture, hydroponics and live food production, the studies found indicated its potential use as a tool to implement organic agriculture and circular economy.
References
Abdulsamad, J. K., & Varghese, S. A. (2017). Effects of fish silage on growth and biochemical characteristics of fresh water microalga Scenedesmus sp. MB 23. Agriculture and Natural Resources, 51(4), 235–242.
Ahuja, I., Dauksas, E., Remme, J. F., Richardsen, R., & Løes, A. K. (2020). Fish and fish waste-based fertilizers in organic farming – With status in Norway: A review. Waste Management, 115, 95–112.
Alvarado, D., Buitrago, E., Solé, M., & Frontado, K. (2008). Experimental evaluation of a composted seaweed extract as microalgal culture media. Aquaculture International, 16(1), 85–90.
Álvarez-García, M., Urrestarazu, M., Guil-Guerrero, J. L., & Jiménez-Becker, S. (2019). Effect of fertigation using fish production wastewater on Pelargonium x zonale growth and nutrient content. Agricultural Water Management, 223, 105726.
An, N.-H., Cho, J.-R., Gu, J.-S., & Kim, S.-C. (2016). Comparison of Physico-Chemical Properties of Organic Liquid Fertilizer Containing Fish Meal According to Manufacture Method. Journal of the Korea Organic Resource Recycling Association, 24(3), 91–99.
An, N.-H., Cho, J.-R., Gu, J.-S., Kim, Y., & Han, E.-J. (2017). Effect of Fish Meal Liquid Fertilizer Application on Soil Characteristics and Growth of Cucumber(Cucumis sativus L.) for Organic Culture. Jornal of Korea Organic Resource Recycling Association, 25(3), 13–21.
Aranganathan, L., & Radhika Rajasree, S. R. (2016). Bioconversion of marine trash fish (MTF) to organic liquid fertilizer for effective solid waste management and its efficacy on Tomato growth. Management of Environmental Quality: An International Journal, 27(1), 93–103.
Arioli, T., Mattner, S. W., & Winberg, P. C. (2015). Applications of seaweed extracts in Australian agriculture: past, present and future. Journal of Applied Phycology 2015 27:5, 27(5), 2007–2015.
Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: treatments, environmental impacts, current and potential uses. International Journal of Food Science & Technology, 43(4), 726–745.
Aspevik, T., Oterhals, Å., Rønning, S. B., Altintzoglou, T., Wubshet, S. G., et al. (2017). Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry. In C. S. ki Lin (Ed.), Chemistry and Chemical Technologies in Waste Valorization (pp. 123–150). Springer, Cham.
Bahari, A., Pirdashti, H., & Yaghoubi, M. (2013). The effects of amino acid fertilizers spraying on photosynthetic pigments and antioxidant enzymes of wheat (Triticum aestivum L.) under salinity stress. International Journal of Agronomy and Plant Production, 4(4), 787–793.
Basmal, J., Aribowo, M. E., Nurhayati, & Kusumawati, R. (2019). Growth rate of Pseudomonas fluorescens in liquid fertilizer from brown seaweed (Sargassum sp.) extracts. IOP Conference Series: Earth and Environmental Science, 383(1), 012027.
Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48.
Bettiol, W., Forner, C., & Mattos, L. P. V. (2014). Development of suppressiveness to Fusarium oxysporum in container media and soil amended with fish emulsion and fish hydrolyzed. Acta Horticulturae, 1044, 133–138.
Bhattacharjee, R., & Dey, U. (2014). Biofertilizer, a way towards organic agriculture: A review. African Journal of Microbiology Research, 8(24), 2332–2342.
Billard, V., Etienne, P., Jannin, L., Garnica, M., Cruz, F., et al. (2014). Two Biostimulants Derived from Algae or Humic Acid Induce Similar Responses in the Mineral Content and Gene Expression of Winter Oilseed Rape (Brassica napus L.). Journal of Plant Growth Regulation, 33(2), 305–316.
Burnett, S. E., Mattson, N. S., & Williams, K. A. (2016). Substrates and fertilizers for organic container production of herbs, vegetables, and herbaceous ornamental plants grown in greenhouses in the United States. Scientia Horticulturae, 208, 111–119.
Busato, J. G., de Carvalho, C. M., Zandonadi, D. B., Sodré, F. F., Mol, A. R., de Oliveira, A. L., & Navarro, R. D. (2017). Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce. Environmental Science and Pollution Research 2017 25:36, 25(36), 35811–35820.
Castro, R. S., Borges Azevedo, C. M. S., & Bezerra-Neto, F. (2006). Increasing cherry tomato yield using fish effluent as irrigation water in Northeast Brazil. Scientia Horticulturae, 110(1), 44–50.
Ching, Y. C., & Redzwan, G. (2017). Biological Treatment of Fish Processing Saline Wastewater for Reuse as Liquid Fertilizer. Sustainability, 9(7), 1062.
Dao, V. T., & Kim, J. K. (2011). Scaled-up bioconversion of fish waste to liquid fertilizer using a 5 L ribbon-type reactor. Journal of Environmental Management, 92(10), 2441–2446.
Dewi, E. N., Rianingsih, L., & Anggo, A. D. (2019). The addition of different starters on characteristics Sargassum sp. liquid fertilizer. IOP Conference Series: Earth and Environmental Science, 246(1), 012045.
Dróżdż, D., Malińska, K., Kacprzak, M., Mrowiec, M., Szczypiór, A., Postawa, P., & Stachowiak, T. (2020). Potential of Fish Pond Sediments Composts as Organic Fertilizers. Waste and Biomass Valorization 2020 11:10, 11(10), 5151–5163.
du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14.
Elansary, H. O., Yessoufou, K., Abdel-Hamid, A. M. E., El-Esawi, M. A., Ali, H. M., & Elshikh, M. S. (2017). Seaweed Extracts Enhance Salam Turfgrass Performance during Prolonged Irrigation Intervals and Saline Shock. Frontiers in Plant Science, 0, 830.
Erasmus, V. N., Kadhila, T., Gabriel, N. N., Thyberg, K. L., Ilngu, S., & Machado, T. (2021). Assessment and quantification of Namibian seafood waste production. Ocean and Coastal Management, 199, 105402.
Fernandez-Salvador, J., Strik, B., & Bryla, D. (2015). Liquid corn and fish fertilizers are good options for fertigation in blackberry cultivars grown in an organic production system. HortScience, 50(2), 225–233.
Figueroa, J. G. S., Jung, H. Y., Jeong, G. T., & Kim, J. K. (2015). The high reutilization value potential of high-salinity anchovy fishmeal wastewater through microbial degradation. World Journal of Microbiology and Biotechnology, 31(10), 1575–1586.
Florez-Jalixto, M. A., Roldán Acero, D. J., & Juscamaita Morales, J. G. (2020). Evaluación de fitotoxicidad y caracterización de un fertilizante líquido elaborado mediante fermentación láctica utilizando subproductos del procesamiento de trucha (Oncorhynchus mykiss). Ecología Aplicada, 19(2), 121.
Frioni, T., Sabbatini, P., Tombesi, S., Norrie, J., Poni, S., Gatti, M., & Palliotti, A. (2018). Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Scientia Horticulturae, 232, 97–106.
García-Gaytán, V., Hernández-Mendoza, F., Coria-Téllez, A., García-Morales, S., Sánchez-Rodríguez, E., Rojas-Abarca, L., & Daneshvar, H. (2018). Fertigation: Nutrition, Stimulation and Bioprotection of the Root in High Performance. Plants, 7(4), 88.
García-Santiago, J. C., Cavazos, C. J. L., González-Fuentes, J. A., Zermeño-González, A., Alvarado, E. R., et al. (2021). Effects of fish-derived protein hydrolysate, animal-based organic fertilisers and irrigation method on the growth and quality of grape tomatoes. Biological Agriculture & Horticulture, 37(2), 107–124.
Gerber, M. D., Lucia, T., Correa, L., Neto, J. E. P., & Correa, É. K. (2017). Phytotoxicity of effluents from swine slaughterhouses using lettuce and cucumber seeds as bioindicators. Science of the Total Environment, 592, 86–90.
Gibilisco, P. E., Lancelotti, J. L., Negrin, V. L., & Idaszkin, Y. L. (2020). Composting of seaweed waste: Evaluation on the growth of Sarcocornia perennis. Journal of Environmental Management, 274, 111193.
Goddek, S., Schmautz, Z., Scott, B., Delaide, B., Keesman, K., Wuertz, S., & Junge, R. (2016). The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce. Agronomy, 6(2), 37.
Goñi, O., Quille, P., & O’Connell, S. (2018). Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiology and Biochemistry, 126, 63–73.
Górka, B., Korzeniowska, K., Lipok, J., & Wieczorek, P. P. (2018). The Biomass of Algae and Algal Extracts in Agricultural Production. In K. Chojnacka, P. Wieczorek, G. Schroeder, & I. Michalak (Eds.), Algae Biomass: Characteristics and Applications (pp. 103–114). Springer, Cham.
Guato-Molina, J. J., Auhing-Arcos, J. A., Crespo-Ávila, J. A., Esmeraldas-García, G. A., Mendoza-León, A. F., & Canchignia-Martínez, H. F. (2019). Plant growth promoting bacteria with potential biocontrol agent of Fusarium oxysporum f. Sp. Lycopersici, and Moniliophthora roreri. Scientia Agropecuaria, 10(3), 393–402.
Guo, Z., Liu, Y., Guo, H., Yan, S., & Mu, J. (2013). Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. Journal of Environmental Sciences, 25(S1), S85–S88.
Gwon, B. G., & Kim, J. K. (2012). Feasibility study on production of liquid fertilizer in a 1 m3 reactor using fishmeal wastewater for commercialization. Environmental Engineering Research, 17(1), 3–8.
Halim, N. R. A., Yusof, H. M., & Sarbon, N. M. (2016). Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends in Food Science and Technology, 51, 24–33.
Hartz, T., Smith, R., & Gaskell, M. (2010). Nitrogen Availability from Liquid Organic Fertilizers. HortTechnology, 20(1), 169–172.
Hashem, H. A., Mansour, H. A., El-Khawas, S. A., & Hassanein, R. A. (2019). The Potentiality of Marine Macro-Algae as Bio-Fertilizers to Improve the Productivity and Salt Stress Tolerance of Canola (Brassica napus L.) Plants. Agronomy, 9(3), 146.
Hidayati, P. A., Mubarak, A. S., & Sudarno. (2020). The optimal n/p ratio of shrimp culture waste liquid fertilizer on growth of Chlorella vulgaris. IOP Conference Series: Earth and Environmental Science, 441(1), 012090.
Hussain, H. I., Kasinadhuni, N., & Arioli, T. (2021). The effect of seaweed extract on tomato plant growth, productivity and soil. Journal of Applied Phycology 2021 33:2, 33(2), 1305–1314.
Illera-Vives, M., Seoane Labandeira, S., Iglesias Loureiro, L., & López-Mosquera, M. E. (2017). Agronomic assessment of a compost consisting of seaweed and fish waste as an organic fertilizer for organic potato crops. Journal of Applied Phycology, 29(3), 1663–1671.
ITP-IMARPE (1995) Compendio biológico tecnológico de las principales especies hidrobiológicas del Perú. Lima-Perú. 146p
Irianto, H. E., Dewi, A. S., & Giyatmi. (2014). Prospective Utilization of Fishery By-products in Indonesia. In S. Kim (Ed.), Seafood Processing By-Products. Springer.
Islam, M. J., & Peñarubia, O. R. (2021). Seafood Waste Management Status in Bangladesh and Potential for Silage Production. Sustainability, 13(4), 2372.
Ju, I., Wj, B., MD, S., La, O., & Oj, E. (2018). A review: Biofertilizer - A key player in enhancing soil fertility and crop productivity. Microbiol Biotechnol Rep, 2(1), 22–28.
Jung, H. Y., & Kim, J. K. (2016). Eco-friendly waste management of mackerel wastewater and enhancement of its reutilization value. International Biodeterioration and Biodegradation, 111, 1–13.
Jung, H. Y., & Kim, J. K. (2020). Complete reutilisation of mixed mackerel and brown seaweed wastewater as a high-quality biofertiliser in open-flow lettuce hydroponics. Journal of Cleaner Production, 247, 119081.
Jung, J., Jung, S., & Choi, H. (2019). Effect of Homemade Liquid Fertilizers on Chemical Property and Microbial Activity of Soil and Cucumber Growth. Journal of the Korea Organic Resource Recycling Association, 27(3), 15–25.
Kaab Omeir, M., Jafari, A., Shirmardi, M., & Roosta, H. (2019). Effects of Irrigation with Fish Farm Effluent on Nutrient Content of Basil and Purslane. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 1–7.
Kafkafi, U., & Kant, S. (2005). FERTIGATION. Encyclopedia of Soils in the Environment, 4, 1–9.
Kang, J. H., Jung, H. Y., & Kim, J. K. (2018). Complete reuse of raw fishmeal wastewater: Evidence from a field cultivation study and economic analysis. Environmental Engineering Research, 23(3), 271–281.
Kang, K. H., Lee, H., Park, T., Sim, J. H., & Kim, S.-Y. (2020). Biodegradation of High Salinity Fishery Wastes in a 150-L Reactor by Bacillus licheniformis TK3-Y for Reutilization as Liquid Fertilizer. Korean Society for Biotechnology and Bioengineering Journal, 35(4), 288–293.
Kang, S. W., Jeong, C., Seo, D. C., Kim, S. Y., & Cho, J. S. (2019). Liquid fertilizer production by alkaline hydrolysis of carcasses and the evaluation of developed fertilizer in hot pepper cultivation. Process Safety and Environmental Protection, 122, 307–312.
Khiari, Z., Kaluthota, S., & Savidov, N. (2019). Aerobic bioconversion of aquaculture solid waste into liquid fertilizer: Effects of bioprocess parameters on kinetics of nitrogen mineralization. Aquaculture, 500, 492–499.
Kim, J.-O., Kim, S.-M., Seo, J.-S., Jee, B.-Y., Kim, Y.-J., & Kwon, M.-G. (2020). Development of an environment-friendly moving aquatic animal rendering equipment and evaluation of fertilizer value for recycling of fish waste. Journal of Fish Pathology, 33(1), 97–101.
Kim, J., Kang, H., Kwon, G., Park, N., Kim, D., & Choi, I. (2019). Effects of Fish-Meal Application on the Growth of Chinese Cabbages (Brassica Campestris L.) and Soil Chemical Properties. Korean Journal of Soil Science and Fertilizer, 52(3), 206–216.
Kim, JK, Jung, H., & Cho, J. (2017). Zero-emission management of organic fisheries’ waste and its favorable impact on the envieronment. In M. Collins (Ed.), Organic Waste (pp. 39–69). Nova Science Publishers, Inc.
Kim, N. Y., Jung, H. Y., & Kim, J. K. (2021). Identification and characterisation of a novel heptapeptide mackerel by-product hydrolysate, and its potential as a functional fertiliser component. Journal of Chromatography B, 1180, 122881.
Kumar, P., & Dubey, K. K. (2020). Biotechnological Interventions for Arbuscular Mycorrhiza Fungi (AMF) Based Biofertilizer: Technological Perspectives. In P. Shukla (Ed.), Microbial Enzymes and Biotechniques (pp. 161–191). Springer, Singapore.
Kusumawati, R., Nurhayati, Pangestu, H. E., & Basmal, J. (2021). Effect of Trichoderma Addition on Sargassum Organic Fertilizer. IOP Conference Series: Earth and Environmental Science, 715(1), 012059.
Lakhal, D., Bahlaouan, B., Boutaleb, N., Bennani, M., & El Antri, S. (2020). Agricultural valorization by biotransformation of fish wastes combined with grape marc and molasses. Mediterranean Journal of Chemistry, 2020(7), 723–733.
Lakhal, D., Boutaleb, N., Bahlaouan, B., Taiek, T., Fathi, A., et al. (2017). Mixture Experimental Design in the Development of a Bio Fertilizer from Fish Waste, Molasses and Scum. International Journal of Engineering Research & Technology, 6(6), 588–594.
Lakshmikandan, M., & Murugesan, A. G. (2016). Chlorella vulgaris MSU-AGM 14, a fresh water microalgal strain - growth and photobiological hydrogen production in acid hydrolysate of seaweed Valoniopsis pachynema. International Journal of Hydrogen Energy, 41(32), 13986–13992.
León, L. H., & Rojas, L. M. (2015). Determinación del potencial promotor del crecimiento vegetal de Azotobacter spp. aislados de la rizósfera de malezas en cultivos de maíz (Zea mays L.). Scientia Agropecuaria, 6(4), 247–257.
Lopes, I. G., Braos, L. B., Cruz, M. C. P., & Vidotti, R. M. (2021). Valorization of animal waste from aquaculture through composting: Nutrient recovery and nitrogen mineralization. Aquaculture, 531, 735859.
Madende, M., & Hayes, M. (2020). Fish by-product use as biostimulants: An overview of the current state of the art, including relevant legislation and regulations within the EU and USA. Molecules, 25(5), 1122.
Marsh, L., & Bechtel, P. J. (2012). Waste (By-Product) Utilization. In L. A. Granata, G. J. Flick, & R. E. Martin (Eds.), The Seafood Industry: Species, Products, Processing, and Safety (pp. 128–135). Wiley-Blackwell.
Mhina, C. F., Jung, H. Y., & Kim, J. K. (2020). Recovery of antioxidant and antimicrobial peptides through the reutilization of Nile perch wastewater by biodegradation using two Bacillus species. Chemosphere, 253, 126728.
Michalak, I, Tuhy, Ł., & Chojnacka, K. (2015). Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chemistry, 13(1), 1183–1195.
Michalak, Izabela, Wilk, R., & Chojnacka, K. (2017). Bioconversion of Baltic Seaweeds into Organic Compost. Waste and Biomass Valorization, 8, 1885–1895.
Moino, B. P., Costa, C. S. D., Silva, M. G. C. da, & Vieira, M. G. A. (2019). Reuse of the alginate extraction waste from Sargassum filipendula for Ni(II) biosorption. Chemical Engineering Communications, 207(1), 17–30.
Nabti, E., Jha, B., & Hartmann, A. (2017). Impact of seaweeds on agricultural crop production as biofertilizer. In International Journal of Environmental Science and Technology (Vol. 14, Issue 5, pp. 1119–1134). Center for Environmental and Energy Research and Studies.
Nascimento, M. dos S., Pereira, S. J. B., dos Santos, R. F., & Vieira, A. M. (2018). Avaliação e caracterização do processo de compostagem de resíduos de peixes. Medicina Veterinaria e Zootecnia, 12(11), 1–7.
Norouzi, A. (2013). A novel approach to produce organic fertilizer from fish scarps (Master’s thesis) [University of Maryland, USA].
Nurhayati, Basmal, J., Kusumawati, R., & Melanie, S. (2020). Characteristics of Gracilaria sp. residue of seaweed sap extraction with extraction time treatment. IOP Conference Series: Earth and Environmental Science, 404(1), 012025.
Ogello, E. O., Wullur, S., Sakakura, Y., & Hagiwara, A. (2018). Composting fishwastes as low-cost and stable diet for culturing Brachionus rotundiformis Tschugunoff (Rotifera): Influence on water quality and microbiota. Aquaculture, 486, 232–239.
Özyurt, G., & Özkütük, A. S. (2019). Advances in Discard and By-product Processing. In Y. Özoğul (Ed.), Innovative Technologies in Seafood Processing (pp. 323–350). CRC Press.
Peña-García, P., Querevalú-Ortiz, J., Ochoa-Mogollón, G., & Sánchez-Suárez, H. (2020). Ensilado biológico de residuos de langostino fermentado con bacterias ácido-lácticas: Uso como biofertilizante en cultivo de pasto y como alimento para cerdos de traspatio. Scientia Agropecuaria, 11(4), 459–471.
Radziemska, M., Vaverková, M. D., Adamcová, D., Brtnický, M., & Mazur, Z. (2019). Valorization of Fish Waste Compost as a Fertilizer for Agricultural Use. Waste and Biomass Valorization, 10, 2537–2545.
Ranasinghe, R., Kannagara, B., & Ratnayake, R. (2021). Hydrolysis of fish waste using fruit wastes of Ananas comosus and Carica papaya for the formulation of liquid fertilizers. International Journal of Recycling Organic Waste in Agriculture, 10(2), 129–143.
Rani Juneius, C. E., Sundari, M., Eswaralakshmi, R., & Elumalai, S. (2018). Seaweed Liquid Fertilizers: A Novel Strategy for the Biofortification of VegeTables and Crops. In J. Patra, G. Das, & H. Shin (Eds.), Microbial Biotechnology (pp. 109–117). Springer, Singapore.
Rohani-Ghadikolaei, K., Ng, W. K., Abdulalian, E., Naser, A., & Yusuf, A. (2012). The effect of seaweed extracts, as a supplement or alternative culture medium, on the growth rate and biochemical composition of the microalga, Isochrysis galbana (Park 1949). Aquaculture Research, 43(10), 1487–1498.
Sahu, B. B., Sahu, U., Tripathy, U., Barik, N. K., Agnibesh, A., Paikaray, A., Mohapatra, S., Senapati, S., & Sundaray, J. (2017). Fusion of sugar industry and fish processing industry waste products in developing high value organic fertilizer and feed supplement. International Journal of Fisheries and Aquatic Research, 2(4), 6–18.
Sahu, B., Mohapatra, B., Barik, N., Sahu, H., Sahoo, P., et al. (2016). In-vitro assessment of plankton production using fish hydrolysate. International Journal of Innovative Studies in Aquatic Biology and Fisheries, 2(1), 14–24.
Sahu, B., Sahu, U., Barik, N., Agnibesh, A., Paikaray, A., Mohapatra, S., & Sahu, J. (2017a). Bio-refinery products from shell fish processing waste: Application of Chitin, Chitosan, Chitooligo saccharides and Derivatives in Organic Agriculture. International Journal of Fisheries and Aquatic Research, 2(4), 27–31.
Saju, S., Thavaprakaash, N., & Amutham, G. (2019). Use of Biostimulants in Enhancing Crop Growth. In A. Rawat & U. Tripathi (Eds.), Advances in Agronomy (pp. 71–96). AkiNik Publications.
Sánchez-Torres, H., Juscamaita-Morales, J., Vargas-Cárdenas, J., & Oliveros-Ramos, R. (2008). Producción de la microalga Nannochloropsis oculata (Droop) Hibberd en medios enriquecidos con ensilado biológico de pescado. Ecología Aplicada, 7(1–2), 149–158.
Sastro, Y., Astuti, E. P., Ikrarwati, I., & Sutardi, S. (2015). Efektivitas Pupuk Organik Cair Hasil Fermentasi Limbah Ikan Pada Caisim dan Selada Skala Lapangan. Prosiding Seminar Nasional Pengembangan Teknologi Pertanian, 232–238.
Serrano, A., Siles, J. A., Chica, A. F., & Martín, M. Á. (2013). Agri-food waste valorization through anaerobic co-digestion: Fish and strawberry residues. Journal of Cleaner Production, 54, 125–132.
Serrano, A., Siles, J. A., Gutiérrez, M. C., & Martín, M. Á. (2014). Optimization of anaerobic co-digestion of strawberry and fish waste. Applied Biochemistry and Biotechnology, 173(6), 1391–1404.
Shanthi, G., Premalatha, M., & Anantharaman, N. (2021). Potential utilization of fish waste for the sustainable production of microalgae rich in renewable protein and phycocyanin-Arthrospira platensis/Spirulina. Journal of Cleaner Production, 294, 126106.
Silva, B., J., Vásquez V., V., & Merino M., F. (2011). Producción de biomasa de Tetraselmis suecica empleando agua de mar con sanguaza. Scientia Agropecuaria, 2(1), 13–23.
Silva, L. D., Bahcevandziev, K., & Pereira, L. (2019). Production of bio-fertilizer from Ascophyllum nodosum and Sargassum muticum (Phaeophyceae). Journal of Oceanology and Limnology, 37(3), 918–927.
Sipaúba-Tavares, L. H., Lusser Segali, A. M. D., Berchielli-Morais, F. A., & Scardoeli-Truzzi, B. (2017). Development of low-cost culture media for Ankistrodesmus gracilis based on inorganic fertilizer and macrophyte. Original Article Acta Limnologica Brasiliensia, 29, e5.
Thendral, B., & Geetha, A. (2019). Physicochemical characterization of traditionally fermented liquid manure from fish waste (Gunapaselam). Indian Journal of Traditional Knowledge, 18(4), 830–836.
Tiwow, V. M. A., Adrianton, Abram, P. H., & Arafah, S. (2019). Bakasang fermentation of Tilapia fish (Oreochromis mossambicus) waste for production of liquid organic fertilizer (LOF). Journal of Physics: Conference Series, 1242(1), 012018.
Tiwow, V. M. A., Adrianton, Abram, P. H., & Simatupang, E. A. (2020). The application of liquid and solid organic fertilizer from Tilapia fish waste for conservation of Central Sulawesi superior Jackfruit plant from Tulo and Beka. Journal of Physics: Conference Series, 1567(2), 022027.
Tsaniya, A. R., Dewi, E. N., & Anggo, A. D. (2021). Characteristics of liquid organic fertilizer from different composition types of seaweed between Gracilaria sp. and Sargassum sp. Journal of Physics: Conference Series, 1943(1), 012071.
Uju, Wijayanta, A. T., Goto, M., & Kamiya, N. (2015). Great potency of seaweed waste biomass from the carrageenan industry for bioethanol production by peracetic acid–ionic liquid pretreatment. Biomass and Bioenergy, 81, 63–69.
Venegas, M., Leiva, A. M., & Vidal, G. (2018). Influence of Anaerobic Digestion with Pretreatment on the Phytotoxicity of Sewage Sludge. Water, Air, and Soil Pollution, 229(381), 1–11.
Venugopal, V. (2021). Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. Frontiers in Sustainable Food, 5, 611835.
Vidya, D., Nayana, K., Sreelakshmi, M., Keerthi, K. V., Mohan, K. S., Sudhakar, M. P., & Arunkumar, K. (2021). A sustainable cultivation of microalgae using dairy and fish wastes for enhanced biomass and bio-product production. Biomass Conversion and Biorefinery 2021, 1–15.
Vijayakumar, S., Durgadevi, S., Arulmozhi, P., Rajalakshmi, S., Gopalakrishnan, T., & Parameswari, N. (2019). Effect of seaweed liquid fertilizer on yield and quality of Capsicum annum L. Acta Ecologica Sinica, 39(5), 406–410.
Villamil, O., Váquiro, H., & Solanilla, J. F. (2017). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry, 224, 160–171.
Visconti, A., Bettiol, W., & Morandi, M. A. B. (2010). Efeito de hidrolisado de peixe sobre o crescimento micelial e controle de Cylindrocladium spathiphylli em espatifilo. Summa Phytopathologica, 36(4), 298–308.
Wang, T., Wu, J., Yi, Y., & Qi, J. (2016). Optimization of Process Conditions for Infected Animal Tissues by Alkaline Hydrolysis Technology. Procedia Environmental Sciences, 31, 366–374.
Ward, B. K., Dufault, R. J., Hassell, R., & Cutulle, M. A. (2018). Affinity of Hyperammonia-Producing Bacteria to Produce Bioammonium/Ammonia Utilizing Five Organic Nitrogen Substrates for Potential Use as an Organic Liquid Fertilizer. ACS Omega, 3(9), 11817–11822.
Xu, C., & Mou, B. (2017). Drench Application of Fish-derived Protein Hydrolysates Affects Lettuce Growth, Chlorophyll Content, and Gas Exchange. HortTechnology, 27(4), 539-543.
Yuan, Y., Chu, D., Fan, J., Zou, P., Qin, Y., et al. (2021). Ecofriendly conversion of algal waste into valuable plant growth-promoting rhizobacteria (PGPR) biomass. Waste Management, 120, 576–584.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 M. Florez-Jalixto, D. Roldán-Acero, J. R. Omote-Sibina, A. Molleda-Ordoñez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).